


# I/A Series<sup>®</sup> Hardware Control Processor 40, Style B 2000 Block Software



The Control Processor 40, Style B is a high-end optionally fault-tolerant station that provides:

- a large memory capacity for supporting additional blocks
- increased block processing due to a faster processor
- increased input/output capabilities

Together with connected Fieldbus Modules (FBMs), the Control Processor 40, Style B performs regulatory, logic, timing, and sequential control. It also performs data acquisition (via the Fieldbus Modules), alarm detection and notification, and may optionally serve as an interface for one or more Panel Display

Stations. The non-fault-tolerant version of the Control Processor 40, Style B is a single-width processor module. The fault-tolerant version consists of two single-width processor modules.

Process variables are controlled using time-proven algorithms (mathematical computations performing specific functions), including the EXACT algorithm and the EXACT MV family of algorithms. The algorithms are contained in functional control blocks, which are configured by on-site process engineers to implement the desired control strategies.



SWCH - Switch Position Selector

STATE - State

The versatility of the algorithms, coupled with the variety of Fieldbus Modules available, provides control capabilities suited to a broad range of process control applications. Control strategies ranging from simple feedback and cascade control to highly sophisticated feedforward, nonlinear, and complex characterization control schemes are readily implemented.

Specific functions performed by the Control Processor 40, Style B are listed in Table 1. For a description of the various block types, refer to PSS 21S-3B1 B3 Integrated Control Software.

The display and adjustment of control parameters are implemented through operator-interface devices (video monitors, keyboards, touchscreens, etc.) in the I/A Series system. The control processor interacts with these devices by communicating with the workstation processors and/or application processors to which they are connected. Communication takes place via the Nodebus, and via a higher-level Local Area Network (LAN), if implemented. Various other system stations also communicate with each other over these links.

#### Table 1. Control Functions

#### Input/Output Data AIN - Analog Input **BOOL- Boolean Variable Block** AINR - Redundant Analog Input LONG - Long Integer Variable AOUT - Analog Output PACK - Packed Boolean Variable AOUTR - Redundant Analog Output REAL - Real Variable CIN - Contact Input STRING - String Variable COUT - Contact Output Sequence MAIN - Multiple Analog Input **DEP** - Dependent MCIN - Multiple Contact Input **EXC** - Exception MCOUT - Multiple Contact Output IND - Independent Control MON - Monitor TIM - Timer ACCUM - Accumulator **BIAS** - Bias Computation Motor CALC - Calculator GDEV - General Device CALCA - Advanced Calculator MDACT - Motor Driven Actuator Controller CHARC - Characterizer MTR - Motor Controller DGAP - Differential Gap MOVLV - Motor-Operated Valve DPIDA - Distributed Advanced PID VLV - Valve On/Off Controller DTIME - Dead Time Alarm ALMPRI - Alarm Priority Change LIM - Limiter BLNALM - Boolean Alarm LLAG - Lead/Lag LOGIC - Logic MEALM - Measurement Alarm MATH - Math MSG - Message Alarm PATALM - Pattern Alarm PATTERN - Pattern REALM - Real Alarm PID - Proportional, Integral, Derivative PIDA - Advanced PID used in conjunction with FBTUNE and STALM - State Alarm **FFTUNE** Miscellaneous FBTUNE - Feedback Self-Tuner **EVENT** - Event Reporting FFTUNE - Feedforward Self-Tuner PLB - Programmable Logic Block PIDE - PID with EXACT Tuning **Optional** PIDX - PID Extended DSI - Panel Display Station Interface PIDXE - PID Extended, with EXACT Tuning AMSSEC - Gas Chromatograph Secondary PTC - Proportional Time Control Window Equipment Control Blocks **OUTSEL - Output Select** AMSPRI - Gas Chromatograph RAMP - Multi-Ramp Sequence ECB13 - Hydrostatic Tank Gauge **RATIO** - Ratio Computation ECB18 - Intelligent Transmitter ECB22 - Mass Flow Transmitter SIGSEL - Signal Selector

Table 1. Control Functions (Cont.)

| Equipment Control Blocks                              |                                                |
|-------------------------------------------------------|------------------------------------------------|
| ECB01 - Analog Input                                  | ECB14 - Panel Mounted Display                  |
| ECB02 - Analog Input & Analog Output                  | ECB23 - Multibaud FBM44; FBM39 IT 2 Interface  |
| ECB04 - Pulse In & Analog Output                      | Parent                                         |
| ECB05 - Digital In, Sustained/ Momentary, Digital Out | ECB34 - MDACT Feedback Tri-State               |
| ECB06 - Sequence of Events Input                      | ECB36 - MDACT Pulse Width Modulation Tri-State |
| ECB07 - Digital In & Pulse Count Input                | ECB38R - IT2 Interface Redundant Parent        |
| ECB08 - Ladder Logic - OR - dc Out/Validated Input    | ECB41 to ECB46 - Cluster and SPECTRUM I/O ECBs |
| ECB09 - Remote/Manual Station (Analog/Digital I/O)    | ECB47 to ECB51 - Cluster and SPECTRUM FBP      |
| ECB11 - Reserved for Primary FBM                      | ECBs                                           |
| ECB12 - Parent ECB for Window ECB18                   | ECB48R - Redundant SPECTRUM UCM                |
| ECB12 - Multibaud FBM43                               | ECB52 - DPIDA Controller                       |

#### PERFORMANCE SPECIFICATIONS

| Memory / | Allocation | for Blocks |
|----------|------------|------------|
|----------|------------|------------|

1.3 MB (2,000 blocks at 650 bytes, average)

## **Number of FBMs Supported**

64 (excluding expansion modules)

#### Minimum Block Processing Cycle (BPC)

50 ms

#### **Configurable Block Periods**

.05, 0.1, 0.2, 0.5, 0.6, 1, 2, 5, 6, 10, 30 seconds 1, 10, 60 minutes

#### **Basic Processing Cycle**

0.1, 0.2, 0.5, 1.0, 2.0 seconds, selectable at system configuration time

### **IPC Connections**

51

#### **Object Manager (OM) Lists (Maximum)**

360

# **Block Executions Per Second**

3400 blocks/second, typical

#### **Memory Allocation for OM Scanner Points**

600 K bytes

#### **Maximum OM Scanner Data Base**

12,000 points

### **Sequence Block Size**

32 K bytes maximum for each block

### The Foxboro Company

33 Commercial Street
Foxboro, Massachusetts 02035-2099
United States of America
<a href="http://www.foxboro.com">http://www.foxboro.com</a>
Inside U.S.: 1-508-543-8750 or 1-888-FOXBORO (1-888-369-2676)
Outside U.S.: Contact your local Foxboro Representative.

EXACT, Foxboro, I/A Series, and SPECTRUM are trademarks of The Foxboro Company.

Copyright 1999 by The Foxboro Company All rights reserved