
®

PSS 21S-1B1 B3

I/A Series® Software
Operating Software
The operating software is a set of programs that control and organize the activity of the I/A Series system. It
directs the activities of the system modules, manages multi-users and multi-tasking, and manages the system’s
files without user participation or supervision. The operating software includes the operating systems and other
subsystems, such as Inter-Process Communications and the Object Manager.

All processors use the same Real-Time Executive
operating system; however, some processors also
use an open Real-Time Application system.

• The Real-Time Executive System – Runs in
every processor

• The Real-Time Application System – Runs as a
task under the Real-Time Executive System on
Application Processors (APs), Workstation
Processors (WPs), and PC ATs.

REAL-TIME EXECUTIVE SYSTEM

The Real-Time Executive System is based on the
VRTX operating system. Its mission is to direct
processor activities on a prioritized, pre-emptive
basis. Pre-emptive means that higher-priority
interrupts are handled immediately. This gives the
processor real-time operation.

Since the Real-Time Executive System is memory
resident and uses pre-emptive scheduling, it can
perform real-time operations at a very fast response
rate.
Product Specifications

PSS 21S-1B1 B3
Page 2
REAL-TIME APPLICATION SYSTEM

The Real-Time Application System is based on
VENIX, a variation of UNIX system V, with which it is
compatible. Application programs that adhere to the
UNIX system V Interface Definition (SVID) run under
this system, once recompiled with the VENIX tool set.

The Real-Time Application System uses VENIX
Distributed System Architecture (VENIX DSA), which
allows access to resources (files, message queues,
etc.) that are distributed throughout the network.
Since this system is merged with the network, a
number of communications problems are simplified:

• The Real-Time Application System does not
need to transfer an entire file to a local processor
just to read part of it.

• Only one copy of a file need exist on a network.

• The resources available to every processor are
the sum of the resources on all processors.

• Tasks on different processors can synchronize
and exchange messages.

• Since utilities do not need to be changed to use
the network, the network is transparent to the
utilities and to programs that use them.

Memory Management

Memory management includes the strategy for
loading programs into memory for execution and any
requests for additional memory that a program makes
while executing (Dynamic Memory Allocation – DMA).

Program Loading

The Real-Time Application System has a task-loading
function that allows pre-emptive swapping. That is, if
a higher-priority task needs to run but there is not
enough room, the first task's space is pre-empted, the
task swapped out, and the higher-priority task loaded
in its place.

Dynamic Memory Allocation

The Real-Time Application System allows a task to
request additional memory while it is executing. A
task can request a memory block of a specific size or
return a block of memory to the free pool. If there is
not enough memory available, the requesting task is
notified.

Code Mapping

Code mapping means the system automatically
moves unused parts of user tasks (or the kernel) to
memory outside the task's address space until those
parts are needed. Code mapping allows the system
to handle programs larger than 64kb (a limit imposed
by the processor), such as the Real-Time Data Base
Manager.

File Management System

Real-Time Application System file management uses
a distributed file system; that is, stations with bulk
storage devices act as file servers for other stations.
These file servers are called Application Processors
(AP-10 and AP-20).

In this way, a task running on any Real-Time
Application System station can make file access calls
both locally and remotely (over the network). The file
system is hierarchical; that is, it consists of directories
that can contain files or subdirectories.

Each physical input/output (I/O) device, from the
display and keyboard to main memory, is treated as a
file, allowing consistent file and device I/O.

The file management system allows both
synchronous and asynchronous access to the files.
Synchronous operation implies that the task that
makes the request suspends while the operating
system performs the access. The task does not
resume until the access completes (successfully or in
error).

In asynchronous operation, the requesting task can
make the access request, then continue to execute.
The task can either check on the status of the access
from time to time, execute until the access finishes, or
suspend until the access finishes.

The file structure is based on the UNIX file system,
which uses 24-bit logical disk-block pointers and
1024-byte disk blocks. A single file can grow
dynamically up to a maximum of two gigabytes.

The file access calls are based on the standard
VENIX file access calls. Foxboro has included an
enhancement that checks file writing by reading the
file back afterwards.

PSS 21S-1B1 B3
Page 3
Error Handling Subsystem

The error handling subsystem insures that the system
can recover from and report an error that occurs in
the system. It does this either by taking the necessary
action itself, or by passing information to other
subsystems so they can handle the error.

Errors handled by the System Management
subsystem are failures in hardware detected by a
combination of error detection hardware and
diagnostic software.

Errors handled by the operating system are software
errors that can be due to design errors in user-written
software, unavailable resources, and other runtime
contention errors. The operating system works in
conjunction with the System Management subsystem
to report these errors.

Error Detection and Reporting

Software runtime errors are detected and handled in
several ways. Calls to the operating system are
checked to see that all the call parameters are within
limits. Whenever the operating system encounters an
error, it sends an interrupt to the calling task.

When a task receives the interrupt signal, it can
invoke a system subroutine to take the appropriate
action (for some classes of errors) or terminate.

The error-reporting function can be invoked to report
errors in a consistent format to the specified output
device.

Error Analysis

Each station can save the relevant text and data
areas and the contents of the processor’s registers
when a runtime error occurs. You can also trigger this
“dump” by code within the task (for example, for
debugging). The dump is automatically written to a
file and a message to that effect is printed.

There is also software for Foxboro to analyze the
dump file for any processor in the system. This
software can interpret the state of the various data
structures within the operating system, do runtime
stack backtracking, and print a listing of various
sections of memory for interpretation.

Real-Time Application System Priority Scheduling

The task is the basic unit that is scheduled. A task is
a program image and its execution environment
(register values, status of open files, current directory,
etc.). The Real-Time Application System allows a
task to create or delete itself and child tasks.

The scheduling system schedules tasks according to
their priority. Priority for background (not real-time)
tasks is a value calculated using the task state,
processor use time, and “nice” value. Priority for real-
time tasks is based on the real-time nice value. Low
numbers (high priorities) run first.

Background tasks in the running state change priority
every second, when the priority is recalculated. The
calculation lowers the priority (increases the priority
number) for processor use time and higher nice
values. It raises the priority (decreases the priority
number) for time spent waiting to run.

Tasks in the sleeping state assume the priority of the
event they are waiting for, which is always a higher
priority than running tasks. Giving a higher priority to
tasks that use a lot of input/output resources helps
keep resources available.

The scheduler always switches to the task with the
highest priority. Background tasks are selected only if
there are no real-time tasks that want to run. Ties go
to the task that has been waiting the longest (first in,
first out).

Networking Capabilities

The Real-Time Application System DSA supports
networking. Built into the system are the capabilities
of keeping track of which processors are attached to
which node, and how to (and who can) access them.
The Machine Access Table and the User Access
Table determine the configuration of the network.

User Access

User access permission to remote processors is
handled by user and group id mapping tables. Once a
connection is made to a processor on a remote
machine, a processor task checks the id mapping
tables to make sure that the user and group id's are
allowed access. If no id mapping table exists for the
connecting processor, access is denied to all users of
that processor.

PSS 21S-1B1 B3
Page 4
Utilities, Libraries, and the Command Language

The Real-Time Application System provides two
command shells: the Bourne shell and the C shell.
Both are command interpreters with high-level
programming-language constructs (IF-THEN, DO-
WHILE, etc.). You can create command files to
perform tedious or repetitive command sequences.

The Real-Time Application System has commands
associated with or supporting each of the following:

• Text editing and formatting
• Data sorting
• Spelling checker
• System administration
• File management
• Distributed System Architecture (DSA)
• Inter-Process Communications
• Display Manager
• Object Manager
• Virtual Terminal Emulation

TIMING FUNCTIONS

The timing functions include a Real-Time Application
System clock interrupt handler, a station clock for time
and date, and a user interface for scheduling tasks.

Each station provides user tasks with facilities for
dealing with time of day and for software timers.
These timing facilities are driven by interrupts or
“ticks” coming in from a real-time clock. The Real-
Time Application System uses these real-time clock
interrupts for time-of-day scheduling functions,
timeout functions, and notification functions such as
wake-up signals.

Clock Interrupts

The real-time clock “ticks” every 10 milliseconds. The
minimum periodic scheduling frequency is one
second for the Real-Time Application System, and
100 milliseconds for the Real-Time Executive System.
The network time-of-day enables all stations to
synchronize their clocks to within one-tenth of a
second. Any user task can read the time of day, and
the System Management subsystem provides a
facility to change it.

Station Clock

The Application Processor and SPECTRUM Slave
Gateway stations can be configured to act as master
timekeepers. Workstation Processors and
Communication Processors also contain calendar
clocks, which maintain system time during power
failures, provided the enclosure has battery backup.
Station processor real-time clock chips maintain
station times between updates from the master
timekeeper.

Time-of-Day Scheduling

You can schedule or deschedule a task and list
currently scheduled tasks. Tasks can be scheduled
to:

• Run once at a specified time of day

• Run periodically at a specified interval
(regardless of changes in station time)

• Run periodically at a specific time of day (Real-
Time Application System only)

Clock Timers

The Real-Time Application System provides software
timers that user tasks can use to:

• Acquire a timer for its use

• Specify the time-out period of the timer

• Specify a handler or an action that should occur if
the timer expires

• Enable the timer

• Disable the timer

• Deallocate the timer

PSS 21S-1B1 B3
Page 5
 OBJECT MANAGER

The Object Manager is a subsystem that controls
access to data units called objects. There are two
classes of objects:

• Control and I/O Objects
(compound:block.parameters)

• Shared Objects

– Tasks
– Devices
– Aliases (character strings)
– Variables (integer, character, long integer,

floating point, and string)

The Object Manager acts as an interface between
applications and the data they require. It keeps track
of the locations of objects so you can write
applications that access data by name only, without
knowing the system configuration.

Because of the Object Manager, object databases
can be created, modified, or moved to another station
without having to modify any of the applications that
access the data. You can write an application before
creating the database it uses. The Object Manager
allows applications to:

• Create, locate, and delete objects

• Get or set single object values (such as process
variables)

• Read or write sets of shared objects (variables)

• Receive notification when an object value
changes by a specified amount

INTER-PROCESS COMMUNICATIONS

“Process,” in this usage, refers to the UNIX term for
tasks and their executing environment, rather than the
manufacturing or production process. In addition to
the standard Inter-Process Communications, The
Foxboro Company has added extensions which
provide for distributed communications between
stations in the system. These extensions allow for
messages that can:

• Pass data or control information between tasks

• Notify another task of an event

• Synchronize the use of common network
resources

• Communicate with applications distributed
throughout the system, without necessarily
knowing where they are

Inter-Process Communications supports not only
connection-oriented communications, but also
connectionless and broadcast communications. The
user interface to Inter-Process Communications is
through a series of C language subroutines.

LANGUAGE PROCESSING

The Real-Time Application System supports the C
and FORTRAN programming languages, including
compilers, linkers, debuggers, and semantic
checkers. All system libraries are fully supported for C
language. Object manager libraries are supported for
FORTRAN and C language.

SYSTEM MANAGEMENT

The System Management software extracts
information about the system and displays it for the
user. In addition, it allows the operator to intervene in
the system operation.

There are three types of information that can be
monitored in this way:

• The topology of the communications network

• Statistics concerning the performance of the
network

• Any station faults that occur

System Management software automatically tracks
the equipment configuration. At initialization, System
Management establishes domains, each consisting of
a System Monitor and its stations, and begins
monitoring network resources.

System Management software consists of a System
Monitor, Station Managers, a Display Manager, Error
Protocol software, Network Booting software, and
Software Management software. These work together
to present displays to the network maintenance
engineer and to support user requests for network
maintenance-control actions or network resource
information.

System Monitor

The System Monitor software, in conjunction with the
exception handler, provides the capability for
application programs and operating systems to
display error messages at workstations and to print
them. There can be more than one System Monitor,
each in control of a number of different stations.

PSS 21S-1B1 B3
Page 6
Station Manager

Each System Monitor has a group of stations in its
domain and communicates with them through their
Station Manager software. A Station Manager sends
statistical and event information to the System
Monitor. This information is presented to the user
upon request and automatically updated.

System Management Displays

You can see the System Management displays
through a series of menus and submenus and by
selecting items on the displays themselves.

The System Management menu provides access to a
hierarchy of displays that show:

• All configured System Monitors

• Stations in each System Monitor domain

• Status of each System Monitor domain

• Status of each station in a System Monitor
domain

• Information about all the devices (e.g., CRT
monitors or printers) attached to the station

• Either current or historical System Management
performance parameters (some of which can be
reset or changed), including network
communications information

• Either current or historical station peripheral
performance parameters

• A history of systems exceptions and operator-
initiated events

Each station status is automatically updated, is color
coded based on status, and blinks until it is
acknowledged.

In addition, there are certain actions that you can take
at designated workstations, as provided for in the
configuration management menu:

• Change a station state (e.g., by reloading it)

• Change network time

• Change station configuration options:

– Enable/disable reports to the System Monitor
– Reboot the station
– Update the EEPROM
– Issue a checkpoint command
– Enable/disable historical recording

These displays also allow you to deal with faults in
various ways:

• In each domain, examine the stations and
attached devices

• Invoke on-line cable test

• Load off-line station test

• Fail the station

• Restart the station

• Attach/detach devices

Station displays are updated whenever the fault
status changes.

The System Management displays have a help
function so that users can get additional information
while using the displays.

PSS 21S-1B1 B3
Page 7

PSS 21S-1B1 B3
Page 8
The Foxboro Company
33 Commercial Street
Foxboro, Massachusetts 02035-2099
United States of America
http://www.foxboro.com
Inside U.S.: 1-508-543-8750 or 1-888-FOXBORO (1-888-369-2676)
Outside U.S.: Contact your local Foxboro Representative.

Foxboro, I/A Series and SPECTRUM are registered trademarks of The Foxboro Company.
PC-AT is a trademark of International Business Machines Corporation
UNIX is a trademark of X/Open Company Limited
VENIX is a trademark of VenturCom, Inc.
VRTX is a trademark of Ready Systems, Inc.

Copyright 1989 by The Foxboro Company
All rights reserved

MB 021 Printed in U.S.A. 0689

An Invensys company

	Operating Software

