Product Specifications | | PSS 215-3K183

Q Intelligent Automation Series
= Sequential Control | \ace ¢

B , R
SEQUENTIAL CONTROL

Q CONTINUOUS CONTROL
LADDER LOGIC

Sequential control complements the continuous and
ladder logic domains by providing sequencing
capabilities. Sequential control can serve either as a
stand-alone control strategy or with continuous, ladder
logic, and discrete input/output control,

Sequential Control

Sequential control is cne of the control domains of the
Integrated Control Software. Sequence, continuous, and
ladder logic blocks can be combined within a single com-
pound structure. The sequence control software will run in

. any Intelligent Automation Series System station that con-
tains control processor software.

Sequential control fulfilis the needs of sequential, feedback-
oriented applications at the equipment control level.

PSS 215-3K1B3

Concepts °

Inthe continuous control domain, control blocks have fixed
algorithms, a fixed number of parameters, and fixed prop-
erties. Additionally, continuous block algorithms can refer
only to their own parameters.

In the sequential control domain, on the other hand, you
can build your own algorithms using a logical set of param-
eters within the control compound/block structure. And
Sequence block algorithms can read and write other
compound/block parameters directly.

A high-level Sequencé language and a parameter set pro-
vide the necessary tools to build Sequence blocks. When

built, these blocks can be combined with continuous and/
or ladder logic blocks in a compound (refer to Figure 1).

Block Classes - «

There are three classes of blocks: Sequence, Monitor, and
Timer.

Sequence blocks —Manipulate any compound, block
parameter, or shared variable. (A
shared variable acts as a linkage

between an application and the con-

trol data base.)

— Activate other Sequence blocks
and Monitor blocks.

— Send messages to historians.

Monitor blocks —Monitor up to 16 process conditions

(parameter values and Boolean

expressions).
Timer blocks —Keep track of time while control
strategies are executing.
Block Types

Structurally, all sequential control blocks are the same.
They differ only in their interaction within a compound.
Their type defines this difference. The types are:

Dependent Sequence block
In"dependent Sequence block
Exception Sequence block
Monitor block

Timer block

A Dependent Sequence block's execution is automatically
delayed while any Exception Sequence block that is
nested in the same compound is running.

An Exception Sequence block’s execution, on the other
hand, is never delayed.

Page 2

EXCEPTION
ACTIVE
INACTIVE

COMPOUND

TRIPPED
| ACTIVE

MONITOR
BLOCKS

I
oF

ACTIVE

PAUSED q ACTIVE

ACTIVE

INDEPENDENT
SEQUENCES

DEPENDENT
SEQUENCES

EXCEPTION
SEQUENCES

I
L

LADDER LOGIC
INTERFACE
BLOCKS

CONTINUOUS

TIMER BLOCKS

BLOCKS

M

[“roeoes I

Figure 1.

The Independent Sequence block’s execution does not
affect the execution of other sequences nor does the ex-
ecution of other blocks affect the operation of Independent
Sequence blocks.

Block States
The block states are Inactive, Active, or Paused.

The Inactive state means that a Sequence block is not
executing statements or that the Monitor block is not
evaluating conditions.

The Active state means that a Sequence block is executing
statements or that the Monitor block is evaluating
conditions.

The Paused state means that a Dependent block isin a
suspended condition. Dependent blocks pause whenever
an Exception block in the same compound becomes
active. The Dependent block becomes active again when
the Exception biocks complete their execution. >
The Monitor block has a Tripped state (one of its conditions !

is true). Therefore, a sequence is activated by the Monitor

block. All 16 conditions actindependently.

PSS 21§-3K1B3

Figure 2. Sample Control Loops

INGREDIENT A

AGITATOR

INGREDIENT B j
\

SEQUENCE
BLOCK
MONITOR
BLOCK
A sP
N\ M PID
T > >
CONDENSER

REACTOR

_L—’

O

The compound parameter SSTATE shows the operational
behavior of the Sequence block states within that com-
pound in one of three values:

Inactive—neither the Sequence blocks nor the Monitor
blocks nested in the same compound are
active.

Active—one or more Monitor blocks; and/or
one or more Dependent Seguence blocks;
and/or
one or more Independent Sequence blocks
that are nested in the compound are active.

Exception—one or more Exception Sequence blocks
nested in the compound are active.
Processing

Sequence blocks can run in parallel with continuous
blocks, ladder logic blocks, and each other in that:

¢ Seguences may be Active concurrently

¢ Monitor blocks may be Active in parallel with
Seqguence blocks.

Timing is an independent feature and can run in parallel
with other blocks.

A

Block processing order is:

1. Continuous and ladder logic blocks

2. Monitors and timers

3. Exception Sequence blocks

4. Dependent and Independent Sequence blocks.

Sequential Control Domain

Sequence blocks contain logic that supervise the control
loops. The logic regulates such things as:

pressure control
temperature control
agitator control
ingredient fills

gas control, etc.

* & © ¢ o

Figures 2 and 3 illustrate one example of how you might
use Sequence blocks to supervise reactor control flow
loops. The intent of this example is to show just a few con-
trol loops rather than a complete control strategy. Figure 2
shows a reactor having two ingredient inputs, an agitator, a
condenser, and a heat jacket.

The Figure 3 flowchart shows Sequence blocks within a
compound structure coordinating the continuous control

- loops inthe Figure 2 example.

Page 3

PSS 218-3K1 B3

Figure 3. Mixed Compound c
Samples SEQ_COORD | INDEPENDENT

¢ | 1

[¢]

M SEQ_FILL_A| [seQ_FiLL_8] | SEQ_HEAT SEQ_REACT SEQ_COOL SEQ_DRAIN

P

0 INGRED. 1 INGRED. 2

u

N DEPENDENT DEPENDENT DEPENDENT DEPENDENT DEPENDENT DEPENDENT

[}

SEQUENCE
CONTINUOUS
| SERIES OF SEQUENCE BLOCK ACTIVATION:
1. SEQ_FILL_A AND SEQ_FILL_B
T _
AGITATOR FLOW heKE
CONTROL RATE CONTROL 2. SEQ_HEAT
L 3. SEQ_REACT

4. SEQ_COOL
5. SEQ_DRAIN

In this example:

.1. SEQ_COORD, an Independent block, is coordinat-
ing activities in the Dependent blocks. The first action
it takes is to activate SEQ__FILL _A and
SEQ__FILL__B.

2. SEQ__FIll_A and SEQ__FIL__B start tofill the reac-
tor with two ingredients, concurrently.

3. The SEQ__FILL__blocks then send a set point to the
PID block, start the jacket temperature control loop,
and start the Monitor block(s) to watch the jacket
temperature.

4. SEQ__FILL blocks continue adding ingredients to the
Reactor. (They no longer need to worry about the
jacket temperature alarms since a Monitor block is
doing this.)

5. If the jacket temperature exceeds the alarm limits, a
Monitor block activates an Exception block to correct
the situation.

When an Exception block is active within a
compound, the Dependent blocks within the same
compound pause (i.e., SEQ__FILL__A, etc.). How-
ever, Independent blocks continue executing.

6. Whenthe SEQ__FILL biocks reach completion, they
turn off the monitors associated only with SEQ__FILL.

Page 4

Sequence Language

The Sequence block language is a subset of the I/A Series
Systems high-level sequential language. It is a structured
language somewhat like the programming language,
PASCAL. However, its focus is on control applications. The
language includes logic flow control statements as well as
Boolean and arithmetic functions. Refer to Figure 4 for a
sample block built with the Sequence language.

The language statements do not operate the I/O directly.
Rather, they make connections between their own param-
eters and I/0O block parameters. They can write the I/O
block parameters within continuous, ladder logic, or other
Sequence blocks which operate the input/output.

Logic Flow Control Statements

These statements determine the flow of control. They may
select groups of statements to be executed, skip them,
execute them repetitively, or delay their execution. They
are: :

if. . .then. . .elseif. . .else. . .endif
for. . to. . .do. . .endfor
repeat. . .until
. while. . .do. . .endwhile
exitloop
goto
wait. . time
wait. . .until condition

exit

PSS 21S8-3K1B3

: Data Operation Statements’ START_TIMER — Starts timers at current value or
‘ There are two kinds of statements that can manipulate selected value.
data: the Assignment statement and the Procedural STOP_TIMER — Stopstimers.
statement. ACTCASES — Manipulates activity of the 16 Monitor
block cases.

The Assignment statement replaces the current value of
some object with a new value that results from evaluating
an expression.

SENDMSG — Initiates a message from executing
: " sequence logic. It can address any
object that acts like a logical device,

The Procedural statements are: such as historians or annunciator _
ACTIVATE — Activates a Sequence block or a keytlg. Itcan also assign a message to
Monitor. a string parameter. :
ABORT — Aborts an active Sequence block or
Monitor.

Figure4. Sample Block Using

the Sequence Language EXCEPTION SEQUENCE
Rkkhdkhkhhkhhkhhhhbhrhrrhhhkhrhrhkhhkkrhhhddhk

EXCEPTION SEQUENCE
CONTROL BLOCK
FOR REACTOR

KREKRERIRRRARRA XA XA A ARk kR hkhhhhhkrkhhhkhd

Specify the user-labeled parameters in

one of the following formats:
user_name : RInnnn; (real 1nput)
user_name : IInnnn; (integer input)
user name : BInnnn; (Boolean input)
user name : ROnnnn; (real output)

N.B.: THE DELIMITERS,
{...}AND (* ... ")
ENCLOSE COMMENTS

AND OPERATOR REMARKS,

}
}
}
}
}
}
}
HREREKAAHHIRIRERRKRRRKRIRRRR IR AR KR KAk)
}
}
}
}
g RESPECTIVELY., COMMENTS

user _name : IOnnnn; (integer output)) ARE USED TO DOCUMENT

user_name : BOnnnn; (Boolean output)} THE PROGRAM. REMARKS

user_ name SNnnnn; (string name) } EXPLAIN PROGRAM ACTIONS
(********?*******************************) TO AN QPERATOR.

EXP2SS : SN1;
(***************i************************)
{ The declaration part finishes here. }

{ Now enter the block's statements. }
(**************************t*k***********)

(* EXCEPTION LOGIC FOR JACKET WATER PUMP FAILURE *)
(* SHUT STEAM VALVES AOV_X15A and AOV_X15B *)

REACT CONT:AOV_X15A.CLOSE := TRUE;
REACT_ CONT:AOV_X15B.CLOSE := TRUE;

(* PUT CONTROLLER TIC_X03 IN MANUAL *)
GﬁEACT_ANLG:TIC_X03.MA := FALSE;
(* SET OUTPUT OF TIC_X03 TO 0.0 *)
REACT_ANLG:TIC_X03.0UT := 0.0;
(* SEND ALARM TO ANNUNCIATOR VIA BOOLEAN BLK *)
REACT_SEQ:EXCP2_MSG.IN_1 := TRUE;
(* SEND MESSAGE TO THE OPERATOR *)
SENDMSG ("WATER PUMP NOT RUNNING UNIT BEING SHUT DOWN'") TO EXP2SS;
(* PROCEED TO SHUT DOWN THE UNIT *)

.

ENDSEQUENCE

.Pageb

PSS 21S-3K1B3

Block Creation

Block creation is accomplished through the Control and
1/0 (CIO) Configurator, much like continuous block config-
uration. The Sequence Environment is accessed from a
menu in the configurator.

The Sequence block ASCII source code is generated from
a standard, full-screen Interactive Character Editor (ICE).
This environment operates only on the selected block. Its
function is to create/edit the source code. After this step, it
is compiled and inserted into the control data base by the
block configurator. When this process is complete, contro!
is returned to the configurator for block functions.

Block Functions
The Sequence block functions include:
FILE — Provides a list of sequence files in
sequence library.
COPY — Copies an entire source file into a new
source file.
EDIT — Provides editing capabilities to the
currently selected file:
VIEW — Provides a search function.
COMPILE — Compiles the currently selected
, destination file.
PRINT — Prints existing source or list files using
: a print utility.
SAVE — Saves data from the currently selected

source file into a new file in the local
sequence library.
EXIT — Exits the Sequence Environment.

I/A Seriegis a trademark of
The Foxboro Company.

Copyright © 1987

® The Foxboro Compan:
FOXBORO : pany

Printed ifi USA

MB 021
0387

