
®

PSS 21S-3M8 B4

I/A Series® Software
Advanced Calculator (CALCA) Block
CALCA

REAL INPUTS (8)

INTEGER INPUTS (2)

LONG INTEGER INPUTS (2)

BOOLEAN INPUTS (16)

MANUAL/AUTO

REAL OUTPUTS (4)

INTEGER OUTPUTS (6)

LONG INTEGER OUTPUTS (2)

BOOLEAN OUTPUTS (8)

PROGRAM ERROR

STEP ERROR

CONFIGURATION ERROR

INTEGRATED CONTROL

INTELLIGENT AUTOMATION
The CALCA block is a multiple input, 50-step, floating
point, programmable calculator. It provides real-time
computational capability for the modeling of
specialized algorithms, signal characterization, and
alteration of control waveforms to augment the
operation of standard blocks.

OVERVIEW

The CALCA block provides both arithmetic and
Boolean computational capability and logical
functions to implement specialized control functions
that cannot be implemented with either the standard
control blocks or the sequence control blocks in time-
critical applications.

All input connections, constant data values, and
programming steps are entered via the block
configuration process.

Every program step contains an opcode, which
identifies the operation to be performed, and up to
two command line arguments. The command line
arguments consist of the actual operands for the step,
the location of the operands, a specification of details
that further refine the opcode, or some combination of
these factors.

STANDARD FEATURES
• Inputs:

– 8 real
– 2 long integer
– 2 integer
– 16 boolean
Product Specifications

PSS 21S-3M8 B4
Page 2
• Outputs:

– 4 real
– 2 long integer
– 8 boolean
– 6 integer

• Auto/Manual control of the real outputs, which
can be initiated by a host process or another
block

• 24 floating point memory data storage registers
that are preserved between execution cycles

• Stack of 24 floating point values for storage of
intermediate computational results – provides
chaining ability for up to 24 calculations

• Up to 50 programming steps of up to
16 characters each

• Initialization of all timers and memory registers

• Dual operand capability for several mathematical
and logic instructions

• Conditional execution of arithmetic calculations,
depending on arithmetic or logic conditions
detected under program control

• Interchangeable arithmetic or Boolean
operations

• Almost unlimited time delays and pulse widths in
the timer instructions.

• Algorithm ability to read the status bits (for
example, Bad, Out-of-Service, Error) of
input/output parameters and directly control the
status bits of output parameters

• Forward branching of program control

• Propagation of the cascade acknowledgment
from an upstream block to a downstream block

• Propagation of cascade initialization request
from a downstream block to an upstream block

• Syntax check of all programming steps during
block installation and reconfiguration

• Input and output parameter error detection and
control

• Detection of program runtime errors

INSTRUCTIONS

Arithmetic
ABS Absolute value
ACOS Arc cosine
ADD Add
ALN Natural antilog
ALOG Common antilog
ASIN Arc sine
ATAN Arc tangent
AVE Average
CHS Change sign
COS Cosine
DEC Decrement
DIV Divide
EXP Exponent
IDIV Integer division
IMOD Integer modulus
INC Increment
LN Natural logarithm
LOG Common logarithm
MAX Maximum
MIN Minimum
MEDN Median
MUL Multiply
RAND Generate random number
RANG Generate random number, Gaussian
RND Round
SEED Seed random number generator
SIN Sine
SQR Square
SQRT Square root
SUB Subtract
TAN Tangent
TRC Truncate

Boolean Logic
AND Logical AND
ANDX Packed logical AND
NAN Logical not AND
NOR Logical not OR
NORX Packed logical not OR
NOT NOT
NOTX Packed logical NOT
NXO Logical not exclusive OR
NXOX Packed logical not exclusive OR
OR Logical OR
ORX Packed logical OR
XOR Logical exclusive OR
XORX Packed logical exclusive OR

PSS 21S-3M8 B4
Page 3
Input/Output Reference
CBD Clear bad status
CE Clear error status
COO Clear out-of-service status
IN Input
INB Input indexed Boolean
INH Input high order
INL Input low order
INR Input indexed real
INS Input status
OUT Output
RBD Read bad and out-of-service bits
RCL Read and clear
RCN Read connect status
RE Read error bit
REL Clear secure status
RON Read in-service status
ROO Read out-of-service bit
RQE Read quality including error
RQL Read quality
SAC Store accumulator in output
SBD Set bad status
SE Set error status
SEC Set secure status
SOO Set out-of-service status
STH Store high order
STL Store low order
SWP Swap

Cascade
PRI Propagate upstream
PRO Propagate downstream
PRP Propagate errors

Memory and Stack Reference
CLA Clear all memory registers
CLM Clear memory register
CST Clear stack
DUP Duplicate
LAC Load accumulator
LACI Load accumulator indirect
POP Pop stack
STM Store memory
STMI Store memory indirect
TSTB Test packed Boolean

Program Control
BIF Branch if false
BII Branch if initializing
BIN Branch if negative
BIP Branch if positive or zero
BIT Branch if true
BIZ Branch if zero
END End program
EXIT Exit program
GTI Go to indirect
GTO Go to
NOP No operation

Clear/Set
CLR Clear
CLRB Clear packed Boolean
SET Set
SETB Set packed Boolean
SSF Set and skip if false
SSI Set and skip if initializing
SSN Set and skip if negative
SSP Set and skip if positive
SST Set and skip if true
SSZ Set and skip if zero

Timing
CHI Clear history
CHN Clear step history
DOFF Delayed OFF
DON Delayed ON
OSP One-shot pulse
TIM Time since midnight

Logic
FF Flip-flop
MRS Master reset flip-flop

Error Control
CLE Clear error
RER Read error
SIEC Skip if error clear

PSS 21S-3M8 B4
Page 4
EXAMPLES

Figure 1 shows a program example that includes a
typical instruction (ADD) which uses two inputs
(dyadic). Figure 2 shows the stack operation for each
program instruction in Figure 1. Figure 3 shows a
program example that includes a typical instruction

(AVE) which uses more than two inputs (polyadic).
Figure 4 shows the stack operation for each program
instruction in Figure 3. Figure 5 shows a program
branching example. Figure 8 shows the timing
diagram for a program example using the DON timing
instruction.

Figure 1. Program Example with Typical Dyadic Instructions

Figure 2. Examples of Stack Operation for Dyadic Instructions

Figure 3. Program Example with Typical Polyadic Instruction (AVE)

STEP01 ADD RI01 RI02 Adds RI01 to RI02 and pushes the result (Sum1) onto stack

STEP02 ADD RI03 RI04 Adds RI03 to RI04 and pushes the result (Sum2) onto stack

STEP03 ADD Pops Sum2 and Sum1 from stack, performs addition, and
pushes the result (Sum3) onto stack

STEP04 IN 4 Pushes constant “4” onto stack

STEP05 DIV Pops ‘4’ and Sum3 from stack, divides them, and pushes
Quotient onto stack

EXAMPLES OF STACK OPERATION FOR DYADIC INSTRUCTIONS TO SOLVE
RO01 = [(RI01 + RI02) + (RI03 + RI04)] / 4

ADD RI01 RI02 ADD RI03 RI04 ADD IN 4 DIV

S1 QUOTIENT

S2

S1

4

SUM3SUM3S1

SUM2

SUM1

S2

S1SUM1

STACK
REGISTERS
(UP TO 16)

S1

LEGEND:
STACK
PUSH

STACK
POP

STEP01 CST Clears stack

STEP02 IN RI01 Pushes RI01 value onto stack

STEP03 IN RI02 Pushes RI02 value onto stack

STEP04 IN RI03 Pushes RI03 value onto stack

STEP05 IN RI04 Pushes RI04 value onto stack

STEP06 AVE Pops Value4 to Value1 from stack, averages them, and
pushes Average onto stack

PSS 21S-3M8 B4
Page 5
Figure 4. Examples of Stack Operation for Polyadic Instruction

Figure 5. Program Branching Diagram

Figure 6. Program Example with Branching Instructions

EXAMPLE OF STACK OPERATION FOR POLYADIC INSTRUCTION TO SOLVE

RO01 = (RI01 + RI02 + RI03 + RI04) / 4

AVEIN RI04IN RI03IN RI02IN RI01

AVERAGES1

VALUE4

VALUE3

VALUE2

VALUE1

S4

S3

S2

S1

VALUE3

VALUE2

VALUE1

S3

S2

S1

VALUE2

VALUE1

S2

S1VALUE1S1

STACK
REGISTERS
(UP TO 16)

LEGEND:
STACK
PUSH

STACK
POP

PROGRAM FUNCTION:
SELECT REAL INPUT 2 IF BI01

IS TRUE; OTHERWISE, SELECT

REAL INPUT 1.

RI01

BI01

RI02

SELECTOR LOGIC
IN CALCA BLOCK RO01

STEP01 IN BI01 Reads Boolean input 1

STEP02 BIT 05 Branches to Step 5 if BI01 is true

STEP03 IN RI01 Reads Real Input 1

STEP04 GTO 06 Branches to Step 6

STEP05 IN RI02 Reads Real Input 2

STEP06 OUT RO01 Writes selected real value to output

PSS 21S-3M8 B4
Page 6
Figure 7. Program Example with DON Timing Instruction

Figure 8. Timing Diagram for DON Example

STEP01 IN BI01 Inputs the value of Boolean input 1 to the accumulator each time
the block executes

STEP02 DON 7 If BI01 remains true for 7 seconds, DON writes a 1 to the
accumulator; otherwise, it writes a 0 to the accumulator

STEP03 OUT BO03 Outputs accumulator contents to Boolean output BO03

BI01

BO03 7 S 7 S

PSS 21S-3M8 B4
Page 7

PSS 21S-3M8 B4
Page 8
The Foxboro Company
33 Commercial Street
Foxboro, Massachusetts 02035-2099
United States of America
http://www.foxboro.com
Inside U.S.: 1-508-543-8750 or 1-888-FOXBORO (1-888-369-2676)
Outside U.S.: Contact your local Foxboro Representative.

Foxboro and I/A Series are registered trademarks of The Foxboro Company.

Copyright 1996 by The Foxboro Company
All rights reserved

MB 021 Printed in U.S.A. 0896

An Invensys company

	Advanced Calculator (CALCA) Block

