
®

PSS 21S-4N3 B3

I/A Series® Software
Application Interface Software
for Digital Equipment Corporation VAX Computers
Application Interface Software (AIS) provides an
application program interface (API) resident in a host
computer. Host computer applications use AIS to gain
access to objects, files, and/or virtual terminal
interface in connected I/A Series systems. This
application program interface, following international
standards, insulates the customer application
programs from host computer specifics. Customer
applications deal with functional requirements instead
of communication implementation details.

Host computer programmers write application
programs using AIS subroutines to perform such
functions as process variable access, file transfer,
and terminal interface. The AIS routines work in
conjunction with one or more Information Network
Interface (INI) modules configured in connected
I/A Series systems. AIS works with Information
Network Interface modules direct or network

connected to the host computer system. The Host
computer vendor determines appropriate Host system
hardware and software to support the connection.

Application functions available with AIS:

• Non-connected named process variable access
• Connected named process variable access
• Exception based, named process variable

access
• Named file upload and download
• User callable floating point data conversion

routine
• Named file partial upload
• Programmatic virtual terminal interface
• Redirection of virtual terminal input and output to

and from files
• Menu-driven virtual terminal access
• Menu-driven file transfer
Product Specifications

PSS 21S-4N3 B3
Page 2
AIS optionally provides circuit optimization and data
object path redundancy on multiple INI systems. The
AIS package, by configuration, apportions process
variable lists among several Information Network
Interface modules. AIS also uses configurable
alternate INI paths for object access upon failure of a
particular INI. This maintains operating object access
services originally provided by the failed INI path.

AIS additionally offers application program
development tools. This package includes utility
programs for exercising the package functions and for
comparing results during application development.
Several optimizations are configurable for tuning the
performance of the host computer application under
development.

Figure 1. Layered Application Program Interface

AIS SERVICES

The Application Interface Software (AIS) accesses
data objects, files residing in the I/A Series stations,
and Application Processor terminal sessions for user-
written application programs resident in Host
computers. Figure 2 illustrates the relationship
between Host computer programs and I/A Series
services.

AIS runs in a Host computer to support redundant
program access of I/A Series objects via INIs. It
includes FORTRAN-callable subroutines used by the
Host programs to read global data from I/A Series
Processors, to write data to I/A Series Processors,
and to execute terminal sessions in I/A Series
Application Processors.

ACCESSING DATA OBJECTS

The methods of object access are:

• Unbuffered read/write of data objects.

• Buffered read/write of data objects.

• Buffered read/write with continuous updates.

• Buffered read/write with continuous updates and
queueing of all changes.

Unbuffered Read/Write of Data Objects

This access method is appropriate when the data
objects are accessed infrequently. Data objects of all
value types can be read or written. Both connectable
and non-connectable data objects may be accessed.
Related subroutines are:

– uread
– uwrite
– sread
– swrite

UNBUFFERED READ OF NON-STRING DATA
OBJECTS

The caller of the uread subroutine specifies the
gateway paths to be used and a set of data objects by
name. The subroutine returns the value, status, and
error code for each non-string data object.

UNBUFFERED WRITE OF NON-STRING DATA
OBJECTS

The caller of the uwrite subroutine specifies the
gateway paths to be used, a set of data objects by
name, and the new values for the data objects. All
data objects that are accessible are updated. An error
code is returned for each data object.

PSS 21S-4N3 B3
Page 3
Figure 2. Host Services Relationship

UNBUFFERED READ OF STRING DATA OBJECTS

One data object may be read at a time. The caller of
the sread subroutine specifies the gateway path to be
used and the name of a data object. The subroutine
returns the string, the status, and an error code for
the data object.

UNBUFFERED WRITE OF STRING DATA OBJECTS

One string data object may be written at a time. The
caller of the swrite subroutine specifies the gateway
path to be used, the name of a data object, and the
string. The subroutine returns the status and an error
code for the data object.

Buffered Read/Write of Data Objects

This access method is appropriate when data objects
are being accessed frequently. Only connectable data
objects can be accessed. Related subroutines are:

– bopen
– sbopen
– bread
– bwrite
– clsset

SPECIFICATION OF DATA OBJECTS FOR
BUFFERED READ/WRITE

The bopen subroutine establishes the change-driven
connections for a set of data objects. The data
objects are then accessible by using the bread and
bwrite subroutines. The caller optionally specifies the
gateway paths. The caller specifies a set of data
objects by name, change value (delta), assumed
value type, an indicator if the set is to be closed when
the program exits, and an access mode (read-only or
read/write). The subroutine makes the connections to
the data objects and returns a data set number to be
used in other calls to reference the set of data
objects, a status, and an error code per data object
informing the caller if and why a connection cannot be
made.

BUFFERED READ OF DATA OBJECTS

The caller of the bread subroutine specifies a set of
data objects by data set number. The subroutine
returns the value and status for each data object in
the data set.

PSS 21S-4N3 B3
Page 4
BUFFERED WRITE OF DATA OBJECTS

The caller of the bwrite subroutine specifies a set of
data objects by data set number and the new values.
All data objects that are accessible are written. An
error code is returned for each data object in the data
set.

Buffered Read/Write with Continuous Update

This access method is appropriate when you want to
have values updated automatically in the Host without
doing any bread calls. Related calls are:

– copen
– scopen
– bread
– bwrite
– clsset

The copen call establishes the change-driven
connections and starts the updating process. The
caller optionally specifies the gateway path(s) to be
used. The caller specifies a set of data objects by
name, change value (delta), assumed value type, an
indicator if the set is to be closed when the program
exits, access mode (read-only or read/write), and an
array to return the indexes into system common
arrays where the value and status are stored. The
subroutine returns a data set number to be used in
the bread, bwrite, and clsset calls.

In using the scopen, it is also possible to specify the
frequency of checking the delta. By updating the write
value table in system common with wrtval, it is
possible to invoke a change-driven write of the value
to the I/A Series object.

Note that bread calls are unnecessary, because value
and status information is automatically updated to
system common arrays in the Host; however, breads
are possible.

The readval, readwval, readsta, readccnt, readwcnt,
mreaidx, and mreawidx calls return read and write
value, status, read and write change count and
multiple read and write information from the AIS
value, status and change count shared memory
arrays.

Buffered Read/Write with Continuous Update and
Queueing of Changes

This access method is appropriate when you want to
be made aware of every change in value greater than
or equal to the delta and/or every change in status of
object in the set.

Related subroutines are:

– qopen
– sqopen

– qread
– bread
– bwrite
– clsset

The qopen call establishes the change-driven
connections and starts the updating and queueing
process. The caller optionally specifies the gateway
path(s) to be used. The caller specifies a set of data
objects by name, change value (delta), assumed
value type, an indicator if the set is to be closed when
the program exits, and an array to return the indexes
into the system common array where the value and
status are stored. The subroutine returns a data set
number to be used in the qread, bread, bwrite, and
clsset calls.

In using the sqopen, it is also possible to specify the
frequency of checking the delta. By updating the write
value table in system common with wrtval, it is
possible to invoke a change-driven write of the value
to the I/A Series object.

The readval, readwval, readsta, readccnt, readwcnt,
mreaidx, and mreawidx calls return read and write
value, status, read and write change count and
multiple read and write information from the AIS
value, status and change count shared memory
arrays.

EXTRACTING CHANGES FROM A CHANGE
QUEUE

The caller of the qread subroutine specifies a set of
data objects by data set number. The subroutine
returns the changes (value and status) from its queue
for that data set. Each change is accompanied by a
data set entry number. Some data objects may have
no changes associated with them; others may have
several changes. The maximum number of changes
to be returned is specified by the caller. The actual
number of changes is returned to the caller. A return
code indicates the state of the queue.

CLOSING A SET OF DATA OBJECTS

Data sets previously opened with the bopen, copen,
qopen, sbopen, scopen, or sqopen call can be closed
with the clsset call.

Obtaining Information about a Data Set

AIS provides routines that can optionally be used to
aid in developing an application. These routines
return information that is available when the data set
is opened. Providing this information relieves the
application from housekeeping. Related subroutines
are gsinfo, getnam, getscn, gsnent, get_set_name,
and get_set_num.

PSS 21S-4N3 B3
Page 5
Converting Floating Point Values

For data object access calls, AIS converts floating
point data between Host and I/A Series formats. For
file access calls, AIS performs no floating point
conversion of data values, but provides a routine for
that purpose. Related subroutine is cnvrt.

Optimizing the Use of Virtual Circuits

By default, AIS subroutines which communicate to
INIs establish and release the X.25 virtual circuit to
the INIs each time they are called. This approach
allows more applications to make use of the INI
services.

If you have an application which makes frequent calls
to such subroutines, you can optimize the application
by specifying that virtual circuits are to be established
once, kept for as long as needed, then released.
Related subroutines are getcir and relcir.

Redundancy

The goal of redundancy is to keep as many objects
accessible as possible when INI(s) fail.

To supply redundancy it is necessary to have two or
more INIs in the same group with some free lists. The
redundancy algorithms keep as many lists open on
the preferred INI as possible, or, as a second choice
within a group. The result is that lists are moved from
a failing preferred INI to a functional INI, then back to
their preferred INI as soon as the preferred INI
returns to a functional state (“OK”).

The state of the INI is constantly monitored by the
AIS package. If one of the INIs changes state (from
OK to FAILED or FAILED to OK), then the following
actions are performed.

• All lists not currently opened on any INI are
opened on their preferred INI. AIS opens these
lists if the INI is OK and has available resources.
Unopened lists occur when other INIs have no
available resources to back up a failed INI.

• All lists currently opened on backup INIs are
moved to their preferred INI. AIS opens these
lists if the preferred INI is OK and has available
resources.

• All lists not currently opened are opened by AIS
on any INI in the same group. AIS opens these
lists if the target INI is OK and has available
resources.

ACCESSING I/A Series FILES

There are three methods of file access:

• Transferring a binary file between I/A Series
Application Processor and the Host.

• Transferring an ASCII file between I/A Series
Application Processor and the Host.

• Reading part of a file from I/A Series Application
Processors.

The file access allows the reading and writing of
binary and ASCII files. The accessing can be done
through FORTRAN interface calls or by using a utility
program, FILUTL.

The iarfil routine transfers the entire contents of an
I/A Series file to a binary Host file.

The iawfil routine transfers the entire contents of a
binary Host file to an I/A Series file.

The iartxt routine transfers the entire contents of an
I/A Series file to a text Host file.

The iawtxt routine transfers the entire contents of a
text Host file to an I/A Series file.

The pfread routine transfers a specified portion of an
I/A Series file into the memory space of the
application program in the Host.

Reading a File from I/A Series Application
Processors

The iarfil, I/A Series read file subroutine, copies a
binary file from an I/A Series Application Processor to
a Host. The caller specifies the I/A Series file name,
Host file name, gateway path, user id, group id, and
Application Processor logical name (as configured in
the INI). An error code is returned. The file content is
copied verbatim with no consideration of file type.
Floating point data is not converted from the
I/A Series floating point format to the Host floating
point format.

The iartxt routine is identical to iarfil except that it also
converts the file contents to the proper text format on
the Host.

PSS 21S-4N3 B3
Page 6
Writing a File to I/A Series Application Processors

The iawfil, I/A Series write file subroutine, copies a
binary file from a Host to an I/A Series Application
Processor. The caller specifies the I/A Series file
name, Host file name, gateway path, user id, group id,
and Application Processor logical name (as
configured in the INI). An error code is returned. The
file content is copied verbatim with no consideration
of file type. Floating point data is not converted from
the Host floating point format to the I/A Series floating
point format.

The Iawtxt routine is identical to iawfil except that it
also converts the file contents to the proper text
format on the I/A Series station.

Reading Part of a File from I/A Series Application
Processors

The pfread, I/A Series partial read file subroutine,
copies part of a file from an I/A Series application
processor into the caller’s program space. The caller
specifies the I/A Series file name, gateway path,
userid, group id, logical name, the number of bytes to
read, and the array in which to store the information.
An error code is returned. The file content is copied
verbatim with no consideration of file type. Floating
point data is not converted from the I/A Series floating
point format to the Host floating point format.

ACCESSING VIRTUAL TERMINAL SESSIONS

The virtual terminal access allows the use of UNIX
features from a Host terminal and a Host program.
The accessing can be done by using a utility program,
called VTUTIL, or through FORTRAN interface calls.

Establishing a Session

The vtinit subroutine establishes a session by logging
into an I/A Series Application Processor. The caller
specifies the gateway path, the Letterbug of the
chosen I/A Series Application Processor, the login
name and password of the account, and the primary
prompt string of the UNIX operating system shell. An
error code is returned.

Processing UNIX Command Lines

The vtprog subroutine issues UNIX command lines
from a specified array and returns UNIX responses to
a specified array. The caller specifies the array
containing the UNIX command lines, the number of
characters to read from the command line array, and
the array in which to store the UNIX responses. The
number of characters stored in the response array,
and an error code are returned.

The vtcont subroutine has the same arguments as
vtprog, but its function is to “continue” the processing
of UNIX command lines initiated with vtprog. A return
code indicates when “continued” processing is
necessary to complete the command(s).

Terminating a Session

The vtend subroutine terminates a session with an
I/A Series Application Processor. An error code is
returned.

UTILITIES

FILUTL Utility Program

The utility program, FILUTL, allows the user to copy:

• A binary Host file to an I/A Series file.
• An I/A Series file to a binary Host file.
• A part of an I/A Series file to VAX memory.
• A Host text file to an I/A Series file.
• An I/A Series text file to a Host, edt, file.

An I/A Series data format to Host floating point
conversion routine is provided. Related subroutine is
cnvrt.

PSS 21S-4N3 B3
Page 7
VTUTIL Utility Program

The utility program, VTUTIL, allows the user to:

• enter UNIX command lines from a Host terminal
keyboard and receive prompts/responses on the
Host terminal screen.

• enter UNIX command lines from a file and
optionally receive UNIX responses back in a file
and/or to the Host terminal screen.

• enter UNIX command lines from a Host terminal
keyboard and optionally receive UNIX responses
back in a file and/or to the Host terminal screen.

The FORTRAN interface calls allow a Host program
to issue UNIX command lines and receive responses
back in the Host program. The interface calls are:

• the vtinit subroutine establishes a session by
logging into an I/A Series Application Processor.

• the vtprog subroutine interacts with UNIX by
issuing UNIX command lines from a specified
array and returning UNIX responses to a
specified array.

• the vtcont subroutine continues the processing of
UNIX command lines initiated with vtprog.

• the vtend subroutine terminates a session with
an I/A Series Application Processor.

AISTST Utility Program

AISTST exercises and inspects the AIS package. The
following is provided:

• The capability to exercise all AIS subroutines
except file access and virtual terminal access;

• The capability to report on the status of the
package;

• The capability to turn traces on or off.

GWSTAT Utility Program

The gwstat utility program retrieves the status of INI
modules and allows the user to connect or disconnect
a gateway.

AISDIS Utility Program

The aisdis program initially displays the status of
configured INI modules and the total number of
change messages per INI module. Secondary
displays give the name, value, and status for the data
objects of a specified data set. Aisdis also displays
the number of changes per object either read from or
written to a connected I/A Series system.

Aisdis is useful for tuning change and write deltas for
data objects. Aisdis is also used to monitor change
and write message load on INI modules.

SPECIFICATIONS

This software release provides support for the Digital Equipment Corporation (DEC) VAX and microVAX
computer systems running VMS Operating System Release 4.7 and later. AIS is a product which layers over
the DEC Packetnet Systems Interface (PSI) Communication Package Release 4.2 or later for directly
connected INI modules to DEC host computers. AIS also supports the Packetnet Systems Interface Access
(PSI Access) communication package for INI modules connected to DECNet using DEC X25 router 2000
interface modules.

Host Hardware
Digital Equipment Corporation (DEC) VAX and
MicroVAX Computers.

Bulk Storage Required
4350 Blocks (not including log files) plus 10 Blocks
per INI serviced.

Direct Connection
Appropriate synchronous host computer hardware
interface supporting CCITT X.25 communications
as defined by Digital Equipment Corporation.

DECNet Connection
X25router 2000 MicroServer (DEMSA) and
supporting hardware as defined by Digital
Equipment Corporation.

Host Software
Digital Equipment Corporation (DEC) VMS Operating
System V4.7 or later.

Direct Connection
Digital Equipment Corporation Packetnet Systems
Interface (PSI) V4.2 or later.

DECNet Connection
X25portal 2000 license for each MicroServer and
appropriate DEC Packetnet Systems Interface
Access (PSI Access) software for each DEC host
requiring access to I/A Series processor data.

PSS 21S-4N3 B3
Page 8
I/A SERIES MODULES

Select from one to twelve Information Network Interface (INI) modules.

APPLICATION INTERFACE SOFTWARE (AIS)

VAX AIS-4 Software License works in conjunction with one to four Information Network Interface (INI) modules
configured in connected I/A Series system(s).
VAX AIS-8 Software License works in conjunction with one to eight Information Network Interface (INI)
modules configured in connected I/A Series system(s).
VAX AIS-12 Software License works in conjunction with one to twelve Information Network Interface (INI)
modules configured in connected I/A Series system(s).
The Foxboro Company
33 Commercial Street
Foxboro, Massachusetts 02035-2099
United States of America
http://www.foxboro.com
Inside U.S.: 1-508-543-8750 or 1-888-FOXBORO (1-888-369-2676)
Outside U.S.: Contact your local Foxboro Representative.

Foxboro and I/A Series are registered trademarks of The Foxboro Company.
DEC, VAX, MicroVAX, VMS, and Packetnet are trademarks of Digital Equipment Corporation.
UNIX is a trademark of X\Open Company, Ltd.

Copyright 1990-1993 by The Foxboro Company
All rights reserved

MB 021 Printed in U.S.A. 1293

An Invensys company

	Application Interface Software for Digital Equipment Corporation VAX Computers
	SPECIFICATIONS
	I/A�Series MODULES
	APPLICATION INTERFACE SOFTWARE (AIS)

