Product Specifications

I/A Series® Application Interface Software
for Sun Microsystems SPARCstation
and SPARCserver Products

Application Interface Software (AlS) provides an computer vendor determines appropriate Host
Application Program Interface (API) resident in a system hardware and software to support the
host computer. Host computer applications use connection.

AlS to gain access to objects, files, and/or virtual

terminal interface in connected I/A Series Application functions available with AlS:
systems. This application program interface,

following international standards, insulates the - Non-connected named process variable
customer application programs from host access

computer specifics. Customer applications deal - Connected named process varlable access
with functional requirements instead of - Exception based, named process variable
communication implementation details. access

Named file upload and download
Host computer programmers write application
programs using AlS functions to perform such
functions as process variable access, file transfer,
and terminal interface. The AIS routines work in
conjunction with one or more Information Network
Interface (INI) modules configured in connected
I/A Series systems. AlS works with Information
Network Interface modules direct or network -
connected to the host computer system. The Host f‘OX:BOHO

A SIEBE COMPANY

PSS 21S-4P1 B3
Page 2

Named file partial upload

Named file partial download

Programmatic virtual terminal interface
Redirection of virtual terminal input and output
to and from files

Menu-driven virtual terminal access
Menu-driven file transfer

AIS optionally provides circuit optimization and
data object path redundancy on multiple INI
systems. The AIS package, by configuration,
apportions process variable lists among several
Information Network Interface modules. AIS also
uses configurable alternate INI paths for object
access upon failure of a particular INI. This
maintains operating object access services
originally provided by the failed INI path.

AlS additionally offers application program
development tools. This package includes utility
programs for exercising the package functions and
for comparing results during application
development. Several optimizations are con-
figurable for tuning the performance of the host
computer application under development.

APPLICATION PROGRAMS
AND THIRD PARTY PACKAGES

SYSTEM COMMON I

APPLICATION INTERFACE SOFTWARE
(APPLICATION PROGRAM INTERFACE SERVICES)

Sun N\'-JtTM X.25

SUN HARDWARE INTERFACE

e e © » o @ INI-10
UP TO 4 .

(I/A Series SYSTEM

Figure 1. Layered Application Program Interface

AlIS SERVICES

The Application Interface Software (AIS) accesses
data objects, files residing in the |/A Series
stations, and Application Processor terminal
sessions for user-written application programs
resident in Host computers. Figure 2 illustrates the
relationship between Host computer programs and
I/A Series services.

AIS runs in a Host computer to support redundant
program access of |/A Series objects via INIs. It
includes C-callable functions used by the Host
programs to read global data from 1/A Series
Processors, to write data to | /A Series Processors,
and to execute terminal sessions in |/A Series
Application Processors.

ACCESSING DATA OBJECTS

The methods of object access are:
. Unbuffered read/write of data objects
Buffered read /write of data objects
Buffered read/write with continuous updates
Buffered read /write with continuous updates
and queuing of all changes

Unbuffered Read/Write of Data Objects

This access method is appropriate when the data
objects are accessed infrequently. Data objects of
all value types can be read or written. Both
connectable and non-connectable data objects
may be accessed. Related functions are:

-uread
-uwrite
-sread
-swrite

UNBUFFERED READ OF NON-STRING DATA
OBJECTS

The caller of the uread function specifies the
gateway paths to be used and a set of data
objects by name. The function returns the value,
status, and error code for each non-string data
object.

UNBUFFERED WRITE OF NON-STRING DATA
OBJECTS

The caller of the uwrite function specifies the
gateway paths to be used, a set of data objects by
name, and the new values for the data objects. All
data objects that are accessible are updated. An
error code is returned for each data object.

PSS 215-4P1 B3
Page 3

CUSTOMER AND THIRD PARTY APPLICATION PROGRAMS

]

PROCESS VARIABLE SERVICES

]

]

DATA FILES SERVICES VIRTUAL TERMINAL SERVICES

I/A Series APPLICATION INTERFACE SOFTWARE

]

STANDARD SunNet X.25 SOFTWARE

L]

STANDARD SUN HARDWARE

[]

|/A Series

INFORMATION NETWO

RK INTERFACE

[]

]

PROCESS
VARIABLES

[]

FILES

’ DATA AND INFORMATION VIRTUAL

TERMINAL SESSIONS

Figure 2. Host Services Relationship

UNBUFFERED READ OF STRING DATA OBJECTS

One data object may be read

at a time.

The caller of the sread function specifies the
gateway path to be used and the name of a data
object. The function returns the string, the status,
and an error code for the data object.

UNBUFFERED WRITE OF STRING DATA OBJECTS
One string data object may be written at a time.
The caller of the swrite function specifies the
gateway path to be used, the name of a data
object, and the string. The function returns the
status and an error code for the data object.

Buffered Read/Write of Data Objects

This access method is appropriate when data
objects are being accessed frequently. Only

connectable data objects can
Related functions are:

-bopen
-sbopen
-bread
-bwrite
-clsset

be accessed.

SPECIFICATION OF DATA OBJECTS FOR
BUFFERED READ/WRITE

The bopen function establishes the change-driven
connections for a set of data objects. The data
objects are then accessible by using the bread and
bwrite functions. The caller optionally specifies the
gateway paths. The caller specifies a set of data
objects by name, change value (delta), assumed
value type, and an access mode (read-only or
read/write). The function makes the connections
to the data objects and returns a data set number
to be used in other calls to reference the set of
data objects, a status, and an error code per data
object informing the caller if and why a connection
cannot be made.

BUFFERED READ OF DATA OBJECTS

The caller of the bread function specifies a set of
data objects by data set number. The function
returns the value and status for each data object in
the data set.

PSS 21S8-4P1 B3
Page 4

BUFFERED WRITE OF DATA OBJECTS

The caller of the bwrite function specifies a set of
data objects by data set number and the new
values. All data objects that are accessible are
written. An error code is returned for each data
object in the data set.

Buffered Read/Write with Continuous Update

This access method Is appropriate when you want
to have values updated automatically in memory or
files without doing any bread calls. Related calls
are:

-copen
-scopen
-bread
-bwrite
-clsset

The copen call establishes the change-driven
connections and starts the updating process. The
caller optionally specifies the gateway path(s) to be
used. The caller specifies a set of data objects by
name, change value (delta), assumed value type,
access mode (read-only or read /write), and an
array to return the indexes into shared memory
arrays where the value and status are stored. The
function returns a data set number to be used in
the bread, bwrite, and clsset calls.

When using scopen, it is also possible to specify
the frequency of checking the delta. By updating
the write value table in shared memory with wrtval,
it Is possible to invoke a change-driven write of the
value to the I/A Series object.

The readval, readwval, readsta, readccnt, readwent,
mreaidx, and mreawidx calls return read and write
value, status, read and write change count, and
multiple read and write information from the AIS
value, status and change count shared memory
arrays.

Note that bread calls, though possible, are
unnecessary, since value and status information is
automatically updated to shared memory arrays.

Buffered Read/Write with Continuous Update
and Queuing of Changes

This access method is appropriate when you want
the application program to be made aware of every
change in value greater than or equal to the delta
and/or every change in status of object in the set.
Related functions are:

-qopen
-sqopen
-gread
-bread
-bwrite
-clsset

The gopen call establishes the change-driven
process variable object connections and starts the
updating and queuing process. The caller
optionally specifies the gateway path(s) to be used.
The caller specifies a set of data objects by name,
change value (delta), assumed value type, and an
array to return the indexes into the shared memory
array where the value and status are stored. The
function returns a data set number to be used in
the gread, bread, bwrite, and clsset calls.

When using sqopen, it is also possible to specify
the frequency of checking the delta. By updating
the write value table In shared memory with wrtval,
it is possible to invoke a change-driven write of the
value to the I/A Series process variable object.

The readval, readwval, readsta, readccnt, readwent,
mreaidx, and mreawidx calls return read and write
value, status, read and write change count, and
multiple read and write information from the AIS
value, status and change count shared memory
arrays.

Note that bread calls, though possible, are
unnecessary, since value and status information is
automatically updated to shared memory arrays.

EXTRACTING CHANGES FROM A CHANGE QUEUE
The caller of the gread function specifies a set of
data objects by data set number. The function
returns the changes (value and status) from its
queue for that data set. Each change is
accompanied by a data set entry number. Some
data objects may have no changes associated with
them; others may have several changes. The
maximum number of changes to be returned is
specified by the caller. The actual number of
changes is returned to the caller. A return code
indicates the state of the gueue.

CLOSING A SET OF DATA OBJECTS

Data sets previously opened with the bopen,
sbopen, copen, scopen, gopen, or sqopen call can
be closed with the clsset call.

o—

PSS 21S-4P1 B3
Page 5

Obtaining Information about a Data Set

AlS provides routines that can optionally be used
to aid in developing an application. These routines
return information that is available when the data
set is opened. Providing this information relieves
the application from housekeeping. Related
functions are gsinfo, getnam, getscn, gsnent,
get_set_name, and get_set_num.

Redundancy

The goal of the redundancy is to keep as many
objects accessible as possible when INI(s) fail.

To supply redundancy it is necessary to have two
or more INIs in the same group with some free
lists. The redundancy algorithms keep as many
lists open on the preferred INI as possible, or, as a
second choice within a group. The result is that
lists are moved from a failing preferred INI to a
functional INI, then back to their preferred INI as
soon as the preferred INI returns to a functional
state ("OK").

The state of the INI is constantly monitored by the
application program interface software. If one of
the INIs changes state (from OK to FAILED or
FAILED to OK), then the following actions are
performed:

All lists not currently opened on any INI are
opened on their preferred INI. Interface
software opens these lists if the INI is OK and
has available resources. Unopened lists occur
when other INIs have no available resources
to back up a failed INI module.

All lists currently opened on backup INIs are
moved to their preferred INI. Interface
software opens these lists if the preferred INI
is OK and has available resources.

All lists not currently opened by interface
software on any INl module are opened on
any INI module in the same group. Interface
software opens these lists if the target INI is
OK and has available resources.

ACCESSING I/A Series FILES
There are four methods of file access:

Transferring a file from an I/A Series
Application Processor to the Host.

Transferring a file from the Host to an
I/A Series Application Processor.

Reading part of a file from an 1/A Series
Application Processors.

Writing part of a file in an I/A Series
Application Processor.

The file access allows the reading and writing of
files. The application program access can be done
through C language interface calls. Related
functions are:

-iarfil

-iawfil

-pfread

-pfwrit

Reading a File from I/A Series Application
Processors

The iarfil routine transfers the entire contents of an
I/A Series Application Processor file to an

I/A Series Open Information Server file. The caller
specifies the 1/A Series Application Processor
name, |/A Series Open Information Server file
name, gateway path, user id, group id, and

I/A Series Application Processor logical name (as
configured in the INI module). An error code is
returned.

Writing a File to I/A Series Application
Processors

The iawfil routine transfers the entire contents of an
I/A Series Open Information Server file to an

I/A Series Application Processor file. The caller
specifies the 1/A Series Application Processor file
name, |/A Series Open Information Server file
name, gateway path, user id, group id, and

I/A Series Application Processor logical name (as
configured in the INI module). An error code is
returned.

Reading Part of a File from I/A Series
Application Processors

The pfread routine transfers a specified portion of
an | /A Series Application Processor file into the
memory space of the application program. The
caller specifies the | /A Series Application
Processor file name, gateway path, userid, group
id, logical name, the number of bytes to read, and
the array in which to store the information.

PSS 21S-4P1 B3
Page 6

An error code Is returned.

Writing Part of a File in an I/A Series
Application Processor

The pfwrit routine transfers data to a specified
portion of an /A Series Application Processor file.
The caller specifies the |/A Series Application
Processor file name, gateway path, userid, group
id, logical name, the number of bytes to write, and
the array from which to write the information. An
error code is returned.

ACCESSING VIRTUAL TERMINAL SESSIONS

The virtual terminal access allows the use of UNIX
features from |/A Series Host application programs
using C language function calls. Related function
calls are:

-vtinit

-viprog

-vtcont

-viend

Establishing a Session

The vtinit function establishes a session by logging
into an |/A Series Application Processor. The
caller specifies the gateway path, the letterbug of
the chosen | /A Series Application Processor, the
target account login name (set up by the site
system administrator prior to use), account
password, and the desired prompt string for the
UNIX operating system shell. An error code is
returned.

Processing UNIX Command Lines

The viprog function issues UNIX command lines
from a specified program array and returns
responses to another specified array. The caller
specifies the array containing the UNIX command
lines, the number of characters to read from the
command line array, and the response storage
array. The number of characters stored in the
response array and an error code are returned.

The vicont function has the same arguments as
viprog, but its function is to "continue” the
processing of UNIX command lines Initiated with
viprog. A return code indicates when “continued”
processing Is necessary to complete the
command(s).

Terminating a Session

The vtend function terminates a session with an
I/A Series Application Processor. An error code is
returned.

OPTIMIZING THE USE OF VIRTUAL CIRCUITS

By default, AIS functions which communicate to
INIs establish and release the X.25 virtual circult to
the INIs each time they are called. This approach
allows more applications to make use of the INI
services.

If you have an application which makes frequent
calls to such functions, you can optimize the
application by specifying that virtual circuits are to
be established once, kept for as long as needed,
then released. Related functions are getcir and
relcir.

UTILITIES
SXOPEN Utility Program

The sxopen program opens an AlS data set with
input from a file and output of the results to stdout.

AISDIS Utility Program

The aisdis program Initially displays the status of
configured INI modules and the total number of
change messages per INl module. Secondary
displays give the name, value, and status for the
data objects of a specified data set. Aisdis also
displays the number of changes per object either
read from or written to a connected |/A Series
system.

Aisdis is useful for tuning change and write deltas
for data objects. Aisdis is also used to monitor
change and write message load on INI modules.
AISTST Utility Program

AISTST exercises and inspects the AIS
package. The following is provided:

- The capability to exercise all AlS functions
except file access and virtual terminal access.

PSS 21S-4P1 B3
Page 7

- The capability to report on the status of the
package.

- The capability to turn traces on or off.
FILVAL Utility Program

The filval program updates the iaval.dat file with the
latest value type, bad bit, value, status, and read
change count for each object.

GWSTAT Utility Program

The gwstat utility program retrieves the status of
INI modules and allows the user to connect or
disconnect a gateway.

FILUTL Utility Program
The filutil program allows the user to copy:

- a Host file to an I/A Series file
- an | /A Series file to a Host file
- part of an I/A Series file to Host memory
- Host memory to part of an |/A Series file

IA2REM Utility Program

The ia2rem program transfers a file from an
I/A Series Application Processor into a file on the
Host computer.

REM2IA Utility Program

The rem2ia program transfers a file from the Host
computer to an I/A Series Application Processor.

VT Utility Program

The vt program allows the user to enter UNIX
command lines to stdin and receive prompts and
responses on stdout and stderr.

SET2LOTU Utility Program

The set2lotu program produces a Lotus 1-2-3
(WK1) format worksheet file from a specified AIS
data set. The first column contains the data object
name, the second column contains the data object
value, and the third column contains the data
object status. Each worksheet row contains
information for one data object.

The resulting worksheet flle has as many rows as
data objects in the source data set.

NAM2LOTU Utility Program

The nam2lotu program produces a Lotus 1-2-3
(WK1) format worksheet file from a specified list of
I/A Series data object names. The first column
contains the data object name, the second column
contains the data object value, and the third
column contalns the data object status. Each
worksheet row contains information for one data
object.

IDX2LOTU Utility Program

The idx2lotu program produces a Lotus 1-2-3
(WK1) format worksheet file from a specified list of
AlS data object indexes. The first column contains
the data object name, the second column contains
the data object value, and the third column
contains the data object status. Each worksheet
row contains information for one data object.

SETMLOTU Utility Program

The setmlotu program modifies a Lotus 1-2-3
(WK1) format worksheet file with values for set
entries. It reads lines of input from stdin. Each
line contains a column, row, and user entry. The
setmlota program gets the value for the user
entries in the set and modifies the

column(s) /row(s) in the file.

NAMMLOTU Utility Program

The nammiotu program modifies a Lotus 1-2-3
(WK1) format worksheet file with values for objects
specified by name. It reads lines of input from
stdin. Each line contains a column, row, and
object name. The nammlotu program gets the
value for the objects and modifies the column(s)/
row(s) in the file.

IDXMLOTU Utility Program

The idxmiotu program modifies a Lotus 1-2-3
(WK1) format worksheet file with values for objects
specified by index. It reads lines of input from
stdin. Each line contains a column, row, and
object index. ldxmilotu gets the value for the
objects and modifies the column(s) /row(s) in the
file.

PSS 21S-4P1 B3
Page 8

SPECIFICATIONS
This software release provides support for the Sun Microsystems SPARCstation running SunOS Release 4.0

and later.

HOST HARDWARE HOST SOFTWARE
Sun Microsystems SPARCstation or Sun Microsystems SunOS Release 4.1 or later.
SPARCserver. Sun Microsystems SunNet x.25.
Bulk Storage
4MB

I/A Series MODULES
Select from one to twelve information Network Interface (INI) modules.

APPLICATION INTERFACE SOFTWARE (AIS)
SUN AIS Software License works In conjunction with one to twelve Information Network Interface modules

configured in connected 1/A Series system(s).

Foxboro and I/A Series are registered trademarks of The Foxboro Company.
Lotus and 1-2-3 are registered trademarks of Lotus Development Corporation.
Sun Microsystems, SunNet, and SunOS are trademarks of Sun Microsystems, Inc.

SPARC is a trademark of SPARC International, Inc.
SPARCstation and SPARCserver are trademarks of SPARG International, Inc. licensed exclusively to Sun Microsystems, Inc.

UNIX is a trademark of UNIX System Laboratories, Inc.

Copyright 1991-1993 by The Foxboro Company
All rights reserved

MB 021 Printed in USA

1293

