Product Specifications

I/A Series®
Open Information Server

PSS 21S-4P3 B3

C Gnee \, b_\ ’\?@ s
ung ool «O\j

The I/A Series Open Information Server is a combination of
hardware and software. This combination provides a high
performance application platform and an engineering net-
work information server to the I/A Series system user. Ap-
plication programs running on this platform and through-
out the supervisory network system have access to all

I/A Series system process control data and files.

Hardware

I/A Series Open Information Server is based on the Sun
Microsystems® SPARCsystem™ computing platform. This
hardware consists of a high performance processor with
SPARC® technology integer and floating point units. The
SPARCsystem environment delivers superior processing
power for process modeling, analysis, and supervisory
control tasks.

Used in conjunction with I/A Series Information Network In-
terface modules, all real-time process values in a con-
nected I/A Series system are available to OIS based appli-
cation programs. The combination of a high performance
architecture with an intelligent interface forms an efficient

interface between real time process control and process
plant information systems.

Software

The software for I/A Series Open Information Server con-
sists of two major parts:

e Operating system with network, programming, and
user environments,

¢ An application program interface to connected
I/A Series systems.

Sun Microsystems SunOS™ software is the operating sys-
tem for the I/A Series Open Information Server. Thisoperat-
ing system meets IEEE POSIX Standard 1003.1-1988 and
System V Interface Definition Issue I1. SunOS software of-
fers an application program development environment that
is source compatible with all UNIX SVR4 environments. In
addition to the operating system, this graphical interface
for user specific applications is based on X/Open - XPG3.

AeEEoy

A SIEBE COMPANY

PSS 21S-4P3 B3

I/A Series Application Interface Software offers data and
services access to application programs operating in the
I/A Series Open Information Server. These services in-
clude:

¢ Real-time process variable read and write.
e Data file read and write.
e Virtual terminal access.
e Network client-server application support

APPLICATION INTERFACE SOFTWARE

Application Interface Software (AlS) provides an applica-
tion program interface (API) resident in a host computer.
Host computer applications use AlS to gain access to ob-
jects and/or files in connected I/A Series systems. This ap-
plication program interface, following international stan-
dards, insulates the customer application programs from
host computer specifics. Customer applications deal with
functional requirements instead of communication imple-
mentation details.

Host computer programmers write application programs
using AlS subroutines to perform such functions as pro-
cess variable access, file transfer, and terminal interface.
The AIS routines work in conjunction with one or more In-
formation Network Interface (INI) modules configured in
connected I/A Series systems. AlS works with Information
Network Interface modules direct or network connected to
the host computer system. The host computer vendor de-
termines appropriate host system hardware and software
to support the connection.

Application functions available with AIS:

e Non-connected named process variable access

e Connected named process variable access
Exception based, named process variable access
Named file upload and download

Named file partial upload

Programmatic virtual terminal interface

Redirection of virtual terminal input and output to and
from files

Menu-driven virtual terminal access

e Menu-driven file transfer

AlS optionally provides circuit optimization and data object
path redundancy on multiple INI systems. The AIS pack-
age, by configuration, appertions process variable lists
among several Information Network Interface modules.
AlS also uses configurable alternate INI paths for object ac-
cess upon failure of a particular INI. This maintains operat-
ing object access services originally provided by the failed
INI path.

AlS additionally offers application program development
tools. This package includes utility programs for exercising
the package functions, and for comparing results during

Page 2

application development. Several optimizations are con-
figurable for tuning the performance of the host computer
application under development.

APPLICATION PROGRAM INTERFACE
SERVICES

The Application Interface Software (AlS) accesses files and
data objects residing in the I/A Series stations for user-
written application programs resident in Host Computers.

The application program interface supports redundant
program access to I/A Series process data via INI(s). It in-
cludes C language callable subroutines used by applica-
tion programs to read global data from I/A Series proces-
sors, to write data to I/A Series processors, and to access
files in I/A Series Application Processors.

The methods of object access are:

Unbuffered read/write of data objects.

Buffered read/write of data objects.

Buffered read/write with continuous updates.
Buffered read/write with continuous updates and
queueing all changes.

Unbuffered Read/Write of Data Objects

This access method is appropriate when the data objects
are accessed infrequently. Data objects of all value types
except string can be read or written. Data objects of the
string type can only be read. Both connectable and non-
connectable data objects may be accessed. Related sub-
routines are:

- uread
— uwrite
- sread
— swrite

UNBUFFERED READ OF NON-STRING DATA OBJECTS
The caller of the uread subroutine specifies the gateway
paths to be used and a set of data objects by name. The
subroutine returns the value, status, and error code for
each non-string data object.

UNBUFFERED WRITE OF NON-STRING DATA OBJECTS
The caller of the uwrite subroutine specifies the gateway
paths to be used, a set of data objects by name, and the
new values for the data objects. All data objects that are
accessible are updated. An error code is returned for each
data object.

UNBUFFERED READ OF STRING DATA OBJECTS

The caller of the sread subroutine specifies the gateway

path to be used and the name of a data object. The sub-

routine returns the string, the status, and an errcr code for

the data object. Only one data object may be read at a ‘l
time.

PSS 21S-4P3 B3

UNBUFFERED WRITE OF STRING DATA OBJECTS

The caller of the write subroutine specifies the gateway
path to be used and the name of a data object. The sub-
routine returns an error code for the data object. Only one
data object may be written at a time.

Buffered Read/Write of Data Objects

This access method is appropriate when data objects are
being accessed frequently. Only connectable data objects
can be accessed. Related subroutines are:

- bopen
- shopen
~ bread
— bwrite
— clsset

SPECIFICATION OF DATA CBJECTS FOR BUFFERED
READ/WRITE

The bopen subroutine establishes the change-driven con-
nections for a set of data objects. The data objects are then
accessible by using the bread and bwrite subroutines. The
caller optionally specifies the gateway paths. The caller
specifies a set of data objects by name, change value
(delta), assumed value type, an indicator if the set isto be
closed when the program exits, and an access mode
(read-only or read/write). The subroutine makes the con-
nections to the data objects and returns a data set number
to be used in cther calls to reference the set of data ob-
jects, a status, and an error code per data object infarming
the caller if and why a connection cannot be made.

BUFFERED READ OF DATA OBJECTS

The caller of the bread subroutine specifies a set of data
objects by data set number. The subroutine returns the
value and status for each data object in the data set.

BUFFERED WRITE OF DATA OBJECTS

The caller of the bwrite subroutine specifies a set of data
objects by data set number and the new values. All data
objects that are accessible are written. An error code is re-
turned for each data object in the data set.

Buffered Read/Write with Continuous Update

This access method is appropriate when you want to have
values updated automatically in memory or files without
doing any bread calls. Related calls are:

- copen
- scopen
— bread
- bwrite
- clsset

The copen call establishes the change-driven connections
and starts the updating process. The caller optionally spe-
cifies the gateway path(s) to be used. The caller specifies a
set of data objects by name, change value (delta), as-
sumed value type, an indicator if the set is to be closed

when the application program exits, access mode (read-
only or read/write), and an array to return the indexes into
system common arrays where the value and status are
stored. The subroutine returns a data set number to be
used in the bread, bwrite, and clsset calls.

In using the scopen, it is also possible to specify the fre-
quency of checking the delta. By updating the write value
table in system common, it is possible to invoke a change-
driven write of the value to the I/A Series object.

Note that bread calls are unnecessary, because value and
status information is automatically updated to system com-
mon arrays in memory or files. Also note, however, breads
are possible.

Buffered Read/Write with Continuous Update
and Queueing of Changes

This access method is appropriate when you want the ap-
plication program to be made aware of every changein
value greater or equal to the delta and/or every change in
status of object in the set. Related subroutines are:

—gopen
- sqgopen
- gread
- bread
- bwrite
- clsset

The gopen call establishes the change-driven process vari-
able object connections and starts the updating and
queueing process. The caller optionally specifies the gate-
way path(s) to be used. The caller specifies a set of data
objects by name, change value (delta), assumed value
type, an indicator if the setis to be closed when the pro-
gram exits, and an array to return the indexes into the sys-
tern common array where the value and status are stored.
The subroutine returns a data set number to be used in the
gread, bread, bwrite, and clsset calls.

In using the sqopen, it is also possible to specify the fre-
guency of checking the delta. By updating the write value
table in system common, itis possible to invoke a change-
driven write of the value to the I/A Series process variable
object.

EXTRACTING CHANGES FROM A CHANGE QUEUE

The caller of the gread subroutine specifies a set of data
objects by data set number. The subroutine returns the
changes (value and status) from its queue for that data set.
Each change is accompanied by a data set entry number.
Some data objects may have no changes associated with
them: others may have several changes. The maximum
number of changes to be returned is specified by the
caller. The actual number of changes is returned to the
caller. A return code indicates the state of the queue.

Page 3

PSS 21S-4P3 B3

CLOSING A SET OF DATA OBJECTS

Data sets previously opened with the bepen, sbopen,
copen, scopen, gopen, or sqopen call can be closed with
the clsset call.

Redundancy

The goal of the redundancy is to keep as many objects ac-
cessible as possible when INI(s) fail.

To supply redundancy it is necessary to have two or more
INIs in the same group with some free lists. The redun-
dancy algorithms keep as many lists open on the preferred
INI as possible, or, as a second choice within a group. The
result is that lists are moved from a failing preferred INI to a
functional INI, then back to their preferred INI as soon as
the preferred INI returns to a functional state ("OK"').

The state of the INI is constantly monitored by the applica-
tion program interface software. If one of the INIs changes
state (from OK to FAILED or FAILED to OK), then the fol-
lowing actions are performed:

e Alllists which are currently not opened on any INI are
opened on their preferred INI. Interface software
opens these lists if the INI is OK and has available re-
sources. Unopened lists occur when other INI mod-
ules have no available resources to back up a failed
INI module.

e All lists currently opened on a backup INI module are
moved to their preferred INl module. Interface
software opens these lists if the preferred INI module
is OK and has available resources.

e Alllists not currently opened by interface software on
any INI module are opened on any INI module in the
same group. Interface software opens these lists if the
target INI module is OK and has available resources.

ACCESSING I/A Series FILES
There are three methods of file access:

o Transferring a file between I/A Series Application Pro-
cessor and the Host.

e Transferring a file between I/A Series Application Pro-
cessor and the Host, supported in FILUTL only.

e Reading part of a file from I/A Series Application
Processors.

The file access allows the reading and writing of files. The
application program access can be done through C lan-
guage interface calls. Related subroutines are:

— jarfil

— iawfil

- pfread

Page 4

Reading a File from I/A Series Application
Processors

The iarfil routine transfers the entire contents of an

I/A Series Application Processor file to an I/A Series Open
Information Server file. The caller specifies the I/A Series
Application Processor file name, I/A Series Open Informa-
tion Server file name, gateway path, user id, group id, and
I’A Series Application Processor logical name (as confi-
gured in the INI madule). An error code is returned.

Writing a File to 1/A Series Application
Processors

The iawfil routine transfers the entire contents of an

I/A Series Open Information Server file to an I/A Series Ap-
plication Processor file. The caller specifies the I/A Series
Application Processor file name, I/A Series Open Informa-
tion Server file name, gateway path, user id, group id, and
I/A Series Application Processor logical name (as con-
figured in the INI module). An error code is returned.

Reading Part of a File from I/A Series
Application Processors

The pfread routine transfers a specified portion of an

I/A Series Application Processor file into the memory space
of the application program. The caller specifies the

I/A Series Application Processor file name, gateway path,
userid, group id, logical name, the number of bytes to
read, and the array in which to store the information. An er-
ror code is returned.

ACCESSING VIRTUAL TERMINAL SESSIONS

The virtual terminal access allows the use of VENIX fea-
tures from I/A Series Open Information Server application
programs using C language subroutine calls. Related sub-
routine calls are:

— vtinit
- vtprog
- vtend

Establishing a Session

The vtinit subroutine establishes a sessicn by logging into
an I/A Series Application Processor. The caller specifies a
gateway path, the letterbug of the chosen I/A Series Appli-
cation Processor, the target account login name (set up by
the site system administrator prior to use), account pass-
word, and the desired prompt string for the VENIX operat-
ing system shell. An error code is returned.

B

=

PSS 21S-4P3 B3

Processing VENIX Command Lines

The vtprog subroutine issues VENIX command lines froma
specified program array and returns responses to another
specified array. The caller specifies the array containing
the VENIX command lines, the number of characters to
read from the command line array, and the response stor-
age array. The number of characters stored in the re-
sponse array and an error code are returned.

Terminating a Session

The vtend subroutine terminates a session with an
I/A Series Application Processor. An error code is re-
turned.

UTILITIES

FILUTL Utility Program
The utility program, FILUTL, allows the user to copy:

- aHostfile to an I/A Series file.
- an I/A Series file to a Host file,
—apartof an I/A Series file to Host memory,

VTUTIL Utility Program
The utility program, VTUTIL, allows the user to:

—enter VENIX command lines from a Host terminal key-

board and receive prompts and responses on the Host
screen.

- Enter VENIX command lines from a file and optionally
receive VENIX responses back in a file and/or to the
Host screen.

- Enter VENIX command lines form a Host keyboard
and optionally receive VENIX responses back in file
and/or to the Host screen.

Obtaining Information about a Data Set

AlS provides routines that can optionally be used to aid in
developing an application. These routines return informa-
tion that is available when the data set is opened. Providing
this information relieves the application from housekeep-
ing. Related subroutines are gsinfo, getnam, and getscn.

Optimizing the Use of Virtual Circuits

By default, AlS subroutines which communicate to INIs es-
tablish and release the X.25 virtual circuit to the INIs each
time they are called. This approach allows more applica-
tions to make use of the INI services.

If you have application which makes frequent calls to such
subroutines, you can optimize the application by specify-
ing that virtual circuits are to be established once, kept for
aslong as needed, then released. Related subroutines are
getcir and relcir.

AISTST Utility Program

AISTST exercises and inspects the AIS package. The fol-
lowing is provided:

- The capability to exercise all AIS subroutines except |
file access and virtual terminal access.

— The capability to report on the status of the package.
- The capability to turn traces on or off,

GWSTAT Utility Program

The gwstat utility program retrieves the status of IN| mod-
ules.

AISDIS Utility Program

The aisdis program initially displays the status of confi-
gured INI medules and the total number of change mes-
sages per INI module. Secondary displays give the name,
value, and status for the data objects of a specified data
set, Aisdis also displays the number of changes per object
either read from or written to a connected I/A Series Sys-
tem.

Aisdis is useful for tuning change and write deltas for data
objects. Aisdis is also used to monitor change and write
message load on INl modules.

IA2REM Utility Program

The ia2rem program transfers a file from an /A Series Ap-
plication Pracessor into a file on the I/A Series Open Infor-
mation Server, personal computer, or UNIX workstation,

REM2IA Utility Program

The rem2ia program transfers a file from the I/A Series
Open Information Server, personal computer, or UNIX
workstation to an I/A Series Application Processor.

SET2LOTU Utility Program

The set2lotu program produces a Lotus 1-2-3 (WK1) for-
mat worksheet file from a specified AIS data set. The first
column contains the data object name, the second column
contains the data object value, and the third column con-
tains the data object status. Each worksheet row contains
information for one data object. The resulting worksheet file
has as many rows as data objects in the source data set.

NAM2LOTU Utility Program

The nam2lotu program produces a Lotus 1-2-3 (WK1) for-
mat worksheet file from a specified list of I/A Series data ob-
ject names. The first column contains the data object
name, the second column contains the data object value,
and the third column contains the data object status. Each
worksheet row contains information for one data object.

Page 5

PSS 21S-4P3 B3

IDX2LOTU Utility Program

The idx2lotu program produces a Lotus 1-2-3 (WK1) for-
mat worksheet file from a specified list of AlS data object in-
dexes. The first column contains the data object name, the
second column contains the data object value, and the
third column contains the data object status. Each work-
sheet row contains information for one data object.

REMOTE OPEN APPLICATION SERVER
FUNCTIONS

The I/A Series Open Information Server serves the informa-
tion needs of network-connected workstations and
MS-DOS personal computers running Sun Microsystems
PC-NFS. The server makes it possible to have program-
matic access to real-time process variable object and data
files from the workstation or personal computer. Subrou-
tine argument specifications of the remote programmatic
interface are identical with those of the I/A Series Applica-
tion Interface Software described previously.

Remote access of I/A Series process control data builds on
Sun Microsystems Network File System (NFS) and Remote
Procedure Calls (RPC). This access method uses the

client/server model to allow client processes in worksta-
tions and/or personal computers to request AlS functions.

Workstation and/or Personal Computer Support

The following calls are supported in the remote worksta-
tions and/or personal computers: uread, uwrite, sread,
(s)bopen, (s)copen, (s)gopen, bread, bwrite, gsinfo,
getnam, getscn, cnvrt, wrtval, readcnt, readsta, readval,
iarfil, and iawfil.

The following calls are NOT supported by workstations or
personal computers but are supported within the I/A Series
Open Information Server: gread, pfread, vtinit, viprog,
vtend, getcir, relcir, connec, inists, and mvbak. Calls not
supported by remote access output a warning message on
the workstation or perscnal computer standard error de-
vice (stderr) and return to the caller.

I/A Series Open Information Server supports aistst and the
file utility in remote access.

I/A Series Open Information Server does not support the
aisdis and gwstat utilities in remote access but does sup-
port the utilities directly on the server.

USER SUPPLIED UNIX WORKSTATIONS
OR DOS BASED PC-NFS PERSONAL COMPUTERS

—

Process Data and Files

Terminal Sessions —

+—— Process Changes and Files

I/A Serles
Open Information

Server

SUPERVISORY OR PC NETWORK

I/A Seriles NODEBUS

Process Data

Terminal Sessi I/A Series

erminal Sessions ’ Control
Process Data and Files . Ploeasetrs
Process Changes and Files

Process Changes

I/A Series
Application
Processors

DISTRIBUTED GLOBAL /A Series

PROCESS DATABASE Device
Gateways
connected to
OEM DEVICES

Figure 1. I/A Series Open Information Server

Page 6

PSS 21S-4P3 B3

SPECIFICATIONS
Processor
PERFORMANCE 21 SPE Cmarks (28.5 MIPS and 4.2 MFLOPS)
FLOATING-POINT UNIT SPARC |IEEE standard 76
CACHE 64KB
MAIN MEMORY Standard RAM/32MB
Ethernet Interface
MEDIA TYPE Coaxial cable
DATA RATE 10MB
CONNECTOR 15 pin
SCSI Interface
CONNECTOR SCSI-2
Serial Input/Output
PORTS Two RS-423 (RS-232C compatible used to connect IN| modules)
AUDIO 8KHz, 8-bit low pulse code modulation, internal speaker
System Bus
TYPE SBus
ADDRESS BUS 32-hit
DATA BUS 32-bit
Internal Storage
FLOPPY DISK MS-DOS compatible, 3.5 inch, 1.44MB/720 KB
HARD DISK DRIVE
Format 3.5 inch disk
Formatted Capacity 424MB
Average Seek Time 16ms
Burst Transfer Rate (synchronous) 4.0 MB/s
Raw Disk Data Rate 1.6MB/s
External Storage
TAPE DRIVE
Format 5.25inch tape, QIC-150
Formatted Capacity 150MB
Monitor
COLOR AND MONOCHROMATIC
Resolution 1152 X 900 pixels
Dots Per Inch 100
Pixel Aspect Ratio 11
Antiglare Treatment Fine silica
Connector 13W3
Power Supply 100-120/200-240 V ac, autoranging
16-INCH COLOR
Refresh Rate 76 or 66 Hz, non-interlaced
Dot Rate 106 or 93 MHz
19-INCH MONOCHROMATIC
Refresh Rate 76 Hz, non-interlaced
Dot Rate 106 MHz
Keyboard 107 keys, low profile
Mouse Optical, 3-button
Environment

OPERATING TEMPERATURE
NON-OPERATING TEMPERATURE
OPERATING HUMIDITY
NON-OPERATING HUMIDITY

10°C to 40°C (50°F to 104°F)
-20°C 10 60°C (-4°F to 140°F)

20% to 80%, noncondensing at 40°C
95%, non-condensing at 40°C

Page 7

PSS 21S-4P3 B3

Regulations
MEETS OR EXCEEDS THE FOLLOWING
REQUIREMENTS:
Safety UL 478, CSA C22.2 No. 154-M1983, TUV (VDE 0806,
IEC380)
RFI/EMI FCC Part 15, DOC, VCCI, VDE 0871
X-ray Emissions DHHS Rule 21, Subchapter J, PTB German X-ray Decree
Static Discharge 15 KV, no hard errors
Electrical
AC VOLTAGE 90-132 V ac or 180-264 V ac
AC FREQUENCY 47-63 Hz
POWER 0.2 KVA
Dimensions and Weights
SPARCstation 2 CHASSIS
Height 7.1cm (2.81in)
Width 40.9cm (16.0in)
Depth 40.9cm (16.01in)
Net weight 10.4 kg (22.8 Ib)
COLOR MONITOR
Height 41.6cm (16.4in)
Width 40.6cm (16.0in)
Depth 45.3cm (17.8in)
Shipping Weight 27.3kg (60.01b)
MONOCHROMATIC
Height 45.0cm {17.7in)
Width 46.0cm (18.11in)
Depth 41.0cm (16.1in)
Shipping Weight 27.7 kg (61.01b)
Software
OPERATING SYSTEM SunOS 4.1.1 or later
LANGUAGE C
NETWORKING NFS, TCP/IP, SunNet™ X.25
GRAPHICS Xlib
WINDOW SYSTEMS Open Windows™
PROCESS CONTROL APPLICATIONS TOOLS Foxboro Application Interface Software

The Foxboro logo and I/A Series are registered trademarks
of The Foxboro Company.

Lotus and 1-2-3 are registered trademarks of

Lotus Development Corporation.

Sun Microsystems is a registered trademark

of Sun Microsystems,Inc.

SunNet, SunOS, and OpenWindows are trademarks

of Sun Microsystems, Inc.

SPARC is registered trademark of

SPARC International, Inc.

SPARCsystem is a trademark of SPARC International, Inc.,
licensed exclusively to Sun Microsystems, Inc.

UNIX is a registered trademark of

AT&T Bell Laboratories.

VENIX is a trademark of VenturCom, Incorporated.

Copyright 1992 by The Foxboro Company
All rights reserved

MB 021
Printed in U.S.A, 0192

