
www.schneider-electric.com

Foxboro™ DCS

Mathematic (MATH) Block

PSS 41S-3MATH
Product Specification

May 2019



Legal Information
The Schneider Electric brand and any trademarks of Schneider Electric SE and its 
subsidiaries referred to in this guide are the property of Schneider Electric SE or its 
subsidiaries. All other brands may be trademarks of their respective owners.

This guide and its content are protected under applicable copyright laws and furnished 
for informational use only. No part of this guide may be reproduced or transmitted in 
any form or by any means (electronic, mechanical, photocopying, recording, or 
otherwise), for any purpose, without the prior written permission of Schneider Electric.

Schneider Electric does not grant any right or license for commercial use of the guide 
or its content, except for a non-exclusive and personal license to consult it on an "as 
is" basis. Schneider Electric products and equipment should be installed, operated, 
serviced, and maintained only by qualified personnel.

As standards, specifications, and designs change from time to time, information 
contained in this guide may be subject to change without notice.

To the extent permitted by applicable law, no responsibility or liability is assumed by 
Schneider Electric and its subsidiaries for any errors or omissions in the informational 
content of this material or consequences arising out of or resulting from the use of the 
information contained herein.



Overview Mathematic (MATH) Block

Overview
The MATH block is a multiple input, 20-step, floating point, programmable calculator. It
provides real-time computational capability for the modeling of specialized algorithms,
signal characterization, and alteration of control waveforms to augment the operation
of standard blocks.

The MATH block provides arithmetic computational capability to implement
specialized control functions that cannot be implemented with the standard control
blocks in time-critical applications.

All input connections, constant data values, and programming steps are entered via
the block configuration process.

Every program step contains an opcode, which identifies the operation to be
performed, and up to two command line arguments. The command line arguments
consist of the actual operands for the step, the location of the operands, a
specification of details that further refine the opcode, or some combination of these
factors.

Standard Features
• 8 real inputs and 4 real outputs
• Auto/Manual control of the real outputs, which can be initiated by a host process

or another block
• 5 floating point memory data storage registers that are preserved between

execution cycles
• Stack of 24 floating point values for storage of intermediate computational results,

which provides chaining ability for up to 24 calculations
• Up to 20 programming steps of up to 16 characters each
• Initialization of all memory registers
• Dual operand capability for several mathematical instructions
• Conditional execution of mathematical calculations, depending on mathematical

conditions detected under program control
• Algorithm ability to read the status bits (for example, Bad, Out-of-Service, Error)

of input/output parameters and directly control the status bits of output
parameters

• Forward branching of program control
• Propagation of the cascade acknowledgment from an upstream block to a

downstream block
• Syntax check of all programming steps following block installation and

reconfiguration
• Input and output parameter error detection and control
• Detection of program runtime errors

PSS 41S-3MATH, Rev A 3



Mathematic (MATH) Block Instructions

Instructions
Arithmetic
ABS Absolute value

ACOS Arc cosine

ADD Add

ALN Natural antilogarithm

ALOG Common antilogarithm

ASIN Arc sine

ATAN Arc tangent

AVE Average

CHS Change operand sign

COS Cosine

DEC Decrement operand

DIV Divide

EXP Exponent

INC Increment operand

LN Natural logarithm

LOG Common logarithm

MAX Select maximum

MIN Select minimum

MEDN Select median

MUL Multiply

SIN Sine

SQR Square

SQRT Square root

SUB Subtract

TAN Tangent

Input/Output Reference

CBD Clear output bad status bit

IN Input value

INR Input indexed real input value

INS Input status

OUT Write accumulator value to output

RBD Read bad and out-of-service status bits

RCL Read and clear operand

REL Release output

RQE Read quality status and error bit

4 PSS 41S-3MATH, Rev A



Instructions Mathematic (MATH) Block

RQL Read quality status

SBD Set output bad status bit

SEC Secure output

Cascade
PRO Propagate downstream

Memory and Stack Reference

CLA Clear all memory registers

CLM Clear designated memory register

CST Clear stack

DUP Duplicate operands

LACI Load accumulator indirect

POP Pop the last value off the stack

STM Store accumulator value in memory register

STMI Store memory indirect

SWP Swap operands

Program Control

BII Branch if block is initializing

BIN Branch if accumulator is negative

BIP Branch if accumulator is positive

BIZ Branch if accumulator is zero

END End of program

EXIT Terminate program execution

GTI Go to step number in accumulator or operand

GTO Go to step number in operand

NOP No operation; branch to next step

Clear/Set
CLR Clear Boolean

SET Set Boolean

SSI Set Boolean and skip if block is initializing

SSN Set Boolean and skip if accumulator is negative

SSP Set Boolean and skip if accumulator is positive

SSZ Set Boolean and skip if accumulator is zero

PSS 41S-3MATH, Rev A 5



Mathematic (MATH) Block Program Examples

Program Examples
Table 1 shows a program example that includes a typical instruction (ADD) which 
uses two inputs (dyadic).

Figure 1 shows the stack operation for each program instruction in Table 1.

Table 2 shows a program example that includes a typical instruction (AVE) which uses 
more than two inputs (polyadic).

Figure 2 shows the stack operation for each program instruction in Table 2.

Table 1. Program Example with Typical Dyadic Instructions

STEP01 ADD RI01 RI02 Adds RI01 to RI02 and pushes the result
(Sum1) onto stack

STEP02 ADD RI03 RI04 Adds RI03 to RI04 and pushes the result
(Sum2) onto stack

STEP03 ADD Pops Sum2 and Sum1 from stack,
performs addition, and pushes the result
(Sum3) onto stack

STEP04 IN 4 Pushes constant "4" onto stack

STEP05 DIV Pops "4" and Sum3 from stack, divides
them, and pushes Quotient onto stack

Figure 1. Examples of Stack Operation for Dyadic Instructions

Table 2. Program Example with Typical Polyadic Instruction (AVE)

STEP01 CST Clears stack

STEP02 IN RI01 Pushes RI01 value onto stack

STEP03 IN RI02 Pushes RI02 value onto stack

STEP04 IN RI03 Pushes RI03 value onto stack

6 PSS 41S-3MATH, Rev A



Program Examples Mathematic (MATH) Block

Table 2. Program Example with Typical Polyadic Instruction (AVE) (Continued)

STEP05 IN RI04 Pushes RI04 value onto stack

STEP06 AVE Pops Value4 to Value1 from stack, averages
them, and pushes Average onto stack

Figure 2. Examples of Stack Operation for Polyadic Instruction

PSS 41S-3MATH, Rev A 7



Schneider Electric Systems USA, Inc.
38 Neponset Avenue
Foxborough, Massachusetts 02035–2037
United States of America

Global Customer Support: https://pasupport.schneider-electric.com

As standards, specifications, and design change from time to time, 
please ask for confirmation of the information given in this publication.

© 2014–2019 Schneider Electric. All rights reserved.

PSS 41S-3MATH, Rev A

 WARNING: This product can 
expose you to chemicals 
including lead and lead 
compounds, which are 
known to the State of 
California to cause cancer 
and birth defects or other 
reproductive harm. For more 
information, go to 
www.p65warnings.ca.gov/. 


	Mathematic (MATH) Block
	Overview 
	Standard Features 

	Instructions 
	Program Examples 

